{"title":"不连续系数守恒方程的一种预测-校正格式","authors":"Nasrin Okhovati, M. Izadi","doi":"10.5614/J.MATH.FUND.SCI.2020.52.3.6","DOIUrl":null,"url":null,"abstract":"In this paper we propose an explicit predictor-corrector finite difference scheme to numerically solve one-dimensional conservation laws with discontinuous flux function appearing in various physical model problems, such as traffic flow and two-phase flow in porous media. The proposed method is based on the second-order MacCormack finite difference scheme and the solution is obtained by correcting first-order schemes. It is shown that the order of convergence is quadratic in the grid spacing for uniform grids when applied to problems with discontinuity. To illustrate some properties of the proposed scheme, numerical results applied to linear as well as non-linear problems are presented.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"32 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Predictor-Corrector Scheme for Conservation Equations with Discontinuous Coefficients\",\"authors\":\"Nasrin Okhovati, M. Izadi\",\"doi\":\"10.5614/J.MATH.FUND.SCI.2020.52.3.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an explicit predictor-corrector finite difference scheme to numerically solve one-dimensional conservation laws with discontinuous flux function appearing in various physical model problems, such as traffic flow and two-phase flow in porous media. The proposed method is based on the second-order MacCormack finite difference scheme and the solution is obtained by correcting first-order schemes. It is shown that the order of convergence is quadratic in the grid spacing for uniform grids when applied to problems with discontinuity. To illustrate some properties of the proposed scheme, numerical results applied to linear as well as non-linear problems are presented.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/J.MATH.FUND.SCI.2020.52.3.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/J.MATH.FUND.SCI.2020.52.3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A Predictor-Corrector Scheme for Conservation Equations with Discontinuous Coefficients
In this paper we propose an explicit predictor-corrector finite difference scheme to numerically solve one-dimensional conservation laws with discontinuous flux function appearing in various physical model problems, such as traffic flow and two-phase flow in porous media. The proposed method is based on the second-order MacCormack finite difference scheme and the solution is obtained by correcting first-order schemes. It is shown that the order of convergence is quadratic in the grid spacing for uniform grids when applied to problems with discontinuity. To illustrate some properties of the proposed scheme, numerical results applied to linear as well as non-linear problems are presented.
期刊介绍:
Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.