{"title":"基于AODV的NS-3随机航路点和稳态随机航路点移动模型研究","authors":"Alok Singh, Saurabh Sharma, R. Srivastava","doi":"10.3233/jhs-200643","DOIUrl":null,"url":null,"abstract":"NS-3 has been one of the popular network simulator software for many years especially in research related to Mobile Adhoc Networks (MANETs). In NS-3, there is provision of several mobility models including Random Waypoint (RWP) mobility model and Steady State Random Waypoint (SSRWP) mobility model. RWP mobility model suffers from the transition phase related imperfection. SSRWP mobility model overcomes this limitation of RWP mobility by allowing the steady state initialization states of nodes in terms of position, speed and pause time of mobile nodes right from the beginning of the simulation. As SSRWP mobility model avoids any requirement of warm-up (cut-off) phase of RWP mobility model, it saves a significant amount of time of warm-up (cut-off) phase as well as establishes a high level of confidence in results obtained due to absence of any subjective guess. In the present work, RWP and SSRWP mobility models have been investigated using AODV routing protocol and it has been found that a way to mitigate the misleading effect of the transition phase of RWP mobility model is to have a sufficiently large simulation time which results, to a good extent, in convergence of performance of RWP mobility model toward that of SSRWP mobility model.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"68 1","pages":"267-274"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation of random waypoint and steady state random waypoint mobility models in NS-3 using AODV\",\"authors\":\"Alok Singh, Saurabh Sharma, R. Srivastava\",\"doi\":\"10.3233/jhs-200643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NS-3 has been one of the popular network simulator software for many years especially in research related to Mobile Adhoc Networks (MANETs). In NS-3, there is provision of several mobility models including Random Waypoint (RWP) mobility model and Steady State Random Waypoint (SSRWP) mobility model. RWP mobility model suffers from the transition phase related imperfection. SSRWP mobility model overcomes this limitation of RWP mobility by allowing the steady state initialization states of nodes in terms of position, speed and pause time of mobile nodes right from the beginning of the simulation. As SSRWP mobility model avoids any requirement of warm-up (cut-off) phase of RWP mobility model, it saves a significant amount of time of warm-up (cut-off) phase as well as establishes a high level of confidence in results obtained due to absence of any subjective guess. In the present work, RWP and SSRWP mobility models have been investigated using AODV routing protocol and it has been found that a way to mitigate the misleading effect of the transition phase of RWP mobility model is to have a sufficiently large simulation time which results, to a good extent, in convergence of performance of RWP mobility model toward that of SSRWP mobility model.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"68 1\",\"pages\":\"267-274\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jhs-200643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jhs-200643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Investigation of random waypoint and steady state random waypoint mobility models in NS-3 using AODV
NS-3 has been one of the popular network simulator software for many years especially in research related to Mobile Adhoc Networks (MANETs). In NS-3, there is provision of several mobility models including Random Waypoint (RWP) mobility model and Steady State Random Waypoint (SSRWP) mobility model. RWP mobility model suffers from the transition phase related imperfection. SSRWP mobility model overcomes this limitation of RWP mobility by allowing the steady state initialization states of nodes in terms of position, speed and pause time of mobile nodes right from the beginning of the simulation. As SSRWP mobility model avoids any requirement of warm-up (cut-off) phase of RWP mobility model, it saves a significant amount of time of warm-up (cut-off) phase as well as establishes a high level of confidence in results obtained due to absence of any subjective guess. In the present work, RWP and SSRWP mobility models have been investigated using AODV routing protocol and it has been found that a way to mitigate the misleading effect of the transition phase of RWP mobility model is to have a sufficiently large simulation time which results, to a good extent, in convergence of performance of RWP mobility model toward that of SSRWP mobility model.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.