基于静态模型的自动变速器惯性阶段升挡优化及多输入最优控制

Ivan Cvok, J. Deur, Mislav Hihlik, Yijing Zhang, V. Ivanovic, Y. Fujii
{"title":"基于静态模型的自动变速器惯性阶段升挡优化及多输入最优控制","authors":"Ivan Cvok, J. Deur, Mislav Hihlik, Yijing Zhang, V. Ivanovic, Y. Fujii","doi":"10.3390/vehicles5010011","DOIUrl":null,"url":null,"abstract":"Step-ratio automatic transmission upshift performance can be improved by modulating the off-going (OFG) clutch during the inertia phase. In this paper, a static powertrain performance model is derived and applied for the purpose of numerically efficient, multi-objective shift control parameter optimization for the inertia phase. The optimization is aimed at finding the optimal node parameters for simplified, piecewise linear, open-loop profiles of oncoming (ONC) clutch, OFG clutch, and engine torque reduction control variables. The performance indices, i.e., the optimization objectives, include shift comfort, clutch thermal loss, and shift time. The optimization results in 3D Pareto optimal frontiers, which are then analyzed and compared with those obtained by using the previously developed, nonlinear model-based, genetic algorithm optimization tool. The derived method is employed in order to develop a static model-based predictive control (S-MPC) strategy, which commands ONC clutch torque control input while retaining open-loop controls for engine and OFG clutch control inputs. The S-MPC strategy aims at providing the prespecified shift time, while the shift time accuracy is relaxed to some extent by using a control input dead zone element to avoid chattering effect. The S-MPC system performance is verified through simulation and compared with the genetic algorithm benchmark. The simulation results demonstrate that the S-MPC strategy approaches the benchmark performance.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Static Model-Based Optimization and Multi-Input Optimal Control of Automatic Transmission Upshift during Inertia Phase\",\"authors\":\"Ivan Cvok, J. Deur, Mislav Hihlik, Yijing Zhang, V. Ivanovic, Y. Fujii\",\"doi\":\"10.3390/vehicles5010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Step-ratio automatic transmission upshift performance can be improved by modulating the off-going (OFG) clutch during the inertia phase. In this paper, a static powertrain performance model is derived and applied for the purpose of numerically efficient, multi-objective shift control parameter optimization for the inertia phase. The optimization is aimed at finding the optimal node parameters for simplified, piecewise linear, open-loop profiles of oncoming (ONC) clutch, OFG clutch, and engine torque reduction control variables. The performance indices, i.e., the optimization objectives, include shift comfort, clutch thermal loss, and shift time. The optimization results in 3D Pareto optimal frontiers, which are then analyzed and compared with those obtained by using the previously developed, nonlinear model-based, genetic algorithm optimization tool. The derived method is employed in order to develop a static model-based predictive control (S-MPC) strategy, which commands ONC clutch torque control input while retaining open-loop controls for engine and OFG clutch control inputs. The S-MPC strategy aims at providing the prespecified shift time, while the shift time accuracy is relaxed to some extent by using a control input dead zone element to avoid chattering effect. The S-MPC system performance is verified through simulation and compared with the genetic algorithm benchmark. The simulation results demonstrate that the S-MPC strategy approaches the benchmark performance.\",\"PeriodicalId\":73282,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vehicles5010011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles5010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过在惯性阶段对脱挡离合器进行调节,可以提高步进比自动变速器的升挡性能。本文建立了静态动力系统性能模型,并应用该模型对惯性相位进行了数值高效的多目标变速控制参数优化。优化的目的是为迎面车(ONC)离合器、OFG离合器和发动机减矩控制变量的简化、分段线性、开环剖面找到最优节点参数。性能指标包括换挡舒适性、离合器热损失和换挡时间,即优化目标。将三维Pareto最优边界的优化结果与先前开发的基于非线性模型的遗传算法优化工具进行分析和比较。该方法用于开发基于静态模型的预测控制(S-MPC)策略,该策略在保留发动机和OFG离合器开环控制输入的同时,命令ONC离合器转矩控制输入。S-MPC策略旨在提供预先设定的移位时间,同时通过使用控制输入死区元件来避免抖振效应,在一定程度上放宽了移位时间的精度。通过仿真验证了S-MPC系统的性能,并与遗传算法基准进行了比较。仿真结果表明,S-MPC策略接近基准性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Static Model-Based Optimization and Multi-Input Optimal Control of Automatic Transmission Upshift during Inertia Phase
Step-ratio automatic transmission upshift performance can be improved by modulating the off-going (OFG) clutch during the inertia phase. In this paper, a static powertrain performance model is derived and applied for the purpose of numerically efficient, multi-objective shift control parameter optimization for the inertia phase. The optimization is aimed at finding the optimal node parameters for simplified, piecewise linear, open-loop profiles of oncoming (ONC) clutch, OFG clutch, and engine torque reduction control variables. The performance indices, i.e., the optimization objectives, include shift comfort, clutch thermal loss, and shift time. The optimization results in 3D Pareto optimal frontiers, which are then analyzed and compared with those obtained by using the previously developed, nonlinear model-based, genetic algorithm optimization tool. The derived method is employed in order to develop a static model-based predictive control (S-MPC) strategy, which commands ONC clutch torque control input while retaining open-loop controls for engine and OFG clutch control inputs. The S-MPC strategy aims at providing the prespecified shift time, while the shift time accuracy is relaxed to some extent by using a control input dead zone element to avoid chattering effect. The S-MPC system performance is verified through simulation and compared with the genetic algorithm benchmark. The simulation results demonstrate that the S-MPC strategy approaches the benchmark performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Feedback Field-Weakening Techniques for Synchronous Machines with Permanent Magnets Synthetic Drivers’ Performance Measures Related to Vehicle Dynamics to Control Road Safety in Curves Diesel Particle Filter Requirements for Euro 7 Technology Continuously Regenerating Heavy-Duty Applications Hybridisation Concept of Light Vehicles Utilising an Electrified Planetary Gear Set A Co-Simulation Platform with Tire and Brake Thermal Model for the Analysis and Reproduction of Blanking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1