M. Elwan, M. Surendra, S. Ghedan, Rami Kansao, Mahmoud Koresh, Hesham Mousa, Agustin Maqui, E. Shahin, M. Valle, I. Arslan, M. Ibrahim, Lamia Rouis, T. Eid
{"title":"基于人工智能的复杂海上成熟油田油藏自动快速保障和油藏健康诊断","authors":"M. Elwan, M. Surendra, S. Ghedan, Rami Kansao, Mahmoud Koresh, Hesham Mousa, Agustin Maqui, E. Shahin, M. Valle, I. Arslan, M. Ibrahim, Lamia Rouis, T. Eid","doi":"10.2118/206077-ms","DOIUrl":null,"url":null,"abstract":"\n The QQ Field in the Gulf of Suez is a mature, geologically complex with multiple stacked, faulted reservoirs, with commingled production between different reservoirs. This paper illustrates the power of an automated tool to perform systematic, rapid, and detailed assessment of the reservoir performance, identify the key recovery obstacles and prepare remedial plans to enable the reservoir to produce to its full potential. The well and reservoir data were processed to compute a series of metrics and key performance indicators at various levels (well, layer, reservoir, well groups, etc.). The tool has several automated modules to facilitate rapid, metric-driven reservoir assurance and management. These modules include: (i) well production/injection allocation, (ii) wells decline curve analysis including event-detection, (iii) pressure and voidage analysis, and (iv) Contact analysis. Using performance analytics, the study quickly identified ways to improve the health of the reservoir and maximize its value.\n The QQ Field predominantly produces from two formations: Nubia and Nezzazat. Furthermore, there are multiple sub-layers in each formation. Reliable flow unit allocation is critical to gauge contribution of each layer, identify the undrained areas of the reservoir, and locate future development opportunities. The flow unit allocation module incorporates all available data such as PLT/ILT data, completion history, permeability of each flow unit at well level, relative pressures, and water influx model. Based on the allocated production, the current recovery factors in Nubia and Nezzazat are approximately 60% and 20% respectively. Analysis of RFT data reveals good vertical communication across Nubia. However, in some areas there is clear pressure discontinuity across layers. The reservoir pressure has dropped below the bubble point in both formations. As a result, water injection was initiated. The pressure in all parts of Nubia was restored above bubble point. Aquifer influx is sufficient to support the current withdrawal rates and further water injection is unnecessary. However, Nezzazat has a significantly higher reservoir complexity and therefore, shows a large variation in pressure behavior. It needs water injection to maintain the reservoir pressure above the bubble point in all parts of the reservoir. Based on the flow-unit allocation, the voidage replacement ratio (VRR) was calculated for each area and each layer. Even though the overall VRR in the waterflooded areas is above one, the distribution of the injected water is uneven. Redistributing injected water and ensuring that all the areas and all the layers are adequately supported will help to maximize recovery. The prolonged dip in oil price demands extreme efficiency. Sound reservoir management must not require unreasonable time or manpower. The rapid, automated analysis enables quick identification of the key areas for improvement in reservoir management practices and maximize the value of the asset.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Based, Automated Rapid Reservoir Assurance and Reservoir Health Diagnostics in a Complex Offshore Mature Field\",\"authors\":\"M. Elwan, M. Surendra, S. Ghedan, Rami Kansao, Mahmoud Koresh, Hesham Mousa, Agustin Maqui, E. Shahin, M. Valle, I. Arslan, M. Ibrahim, Lamia Rouis, T. Eid\",\"doi\":\"10.2118/206077-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The QQ Field in the Gulf of Suez is a mature, geologically complex with multiple stacked, faulted reservoirs, with commingled production between different reservoirs. This paper illustrates the power of an automated tool to perform systematic, rapid, and detailed assessment of the reservoir performance, identify the key recovery obstacles and prepare remedial plans to enable the reservoir to produce to its full potential. The well and reservoir data were processed to compute a series of metrics and key performance indicators at various levels (well, layer, reservoir, well groups, etc.). The tool has several automated modules to facilitate rapid, metric-driven reservoir assurance and management. These modules include: (i) well production/injection allocation, (ii) wells decline curve analysis including event-detection, (iii) pressure and voidage analysis, and (iv) Contact analysis. Using performance analytics, the study quickly identified ways to improve the health of the reservoir and maximize its value.\\n The QQ Field predominantly produces from two formations: Nubia and Nezzazat. Furthermore, there are multiple sub-layers in each formation. Reliable flow unit allocation is critical to gauge contribution of each layer, identify the undrained areas of the reservoir, and locate future development opportunities. The flow unit allocation module incorporates all available data such as PLT/ILT data, completion history, permeability of each flow unit at well level, relative pressures, and water influx model. Based on the allocated production, the current recovery factors in Nubia and Nezzazat are approximately 60% and 20% respectively. Analysis of RFT data reveals good vertical communication across Nubia. However, in some areas there is clear pressure discontinuity across layers. The reservoir pressure has dropped below the bubble point in both formations. As a result, water injection was initiated. The pressure in all parts of Nubia was restored above bubble point. Aquifer influx is sufficient to support the current withdrawal rates and further water injection is unnecessary. However, Nezzazat has a significantly higher reservoir complexity and therefore, shows a large variation in pressure behavior. It needs water injection to maintain the reservoir pressure above the bubble point in all parts of the reservoir. Based on the flow-unit allocation, the voidage replacement ratio (VRR) was calculated for each area and each layer. Even though the overall VRR in the waterflooded areas is above one, the distribution of the injected water is uneven. Redistributing injected water and ensuring that all the areas and all the layers are adequately supported will help to maximize recovery. The prolonged dip in oil price demands extreme efficiency. Sound reservoir management must not require unreasonable time or manpower. The rapid, automated analysis enables quick identification of the key areas for improvement in reservoir management practices and maximize the value of the asset.\",\"PeriodicalId\":10965,\"journal\":{\"name\":\"Day 3 Thu, September 23, 2021\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 23, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206077-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206077-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial Intelligence-Based, Automated Rapid Reservoir Assurance and Reservoir Health Diagnostics in a Complex Offshore Mature Field
The QQ Field in the Gulf of Suez is a mature, geologically complex with multiple stacked, faulted reservoirs, with commingled production between different reservoirs. This paper illustrates the power of an automated tool to perform systematic, rapid, and detailed assessment of the reservoir performance, identify the key recovery obstacles and prepare remedial plans to enable the reservoir to produce to its full potential. The well and reservoir data were processed to compute a series of metrics and key performance indicators at various levels (well, layer, reservoir, well groups, etc.). The tool has several automated modules to facilitate rapid, metric-driven reservoir assurance and management. These modules include: (i) well production/injection allocation, (ii) wells decline curve analysis including event-detection, (iii) pressure and voidage analysis, and (iv) Contact analysis. Using performance analytics, the study quickly identified ways to improve the health of the reservoir and maximize its value.
The QQ Field predominantly produces from two formations: Nubia and Nezzazat. Furthermore, there are multiple sub-layers in each formation. Reliable flow unit allocation is critical to gauge contribution of each layer, identify the undrained areas of the reservoir, and locate future development opportunities. The flow unit allocation module incorporates all available data such as PLT/ILT data, completion history, permeability of each flow unit at well level, relative pressures, and water influx model. Based on the allocated production, the current recovery factors in Nubia and Nezzazat are approximately 60% and 20% respectively. Analysis of RFT data reveals good vertical communication across Nubia. However, in some areas there is clear pressure discontinuity across layers. The reservoir pressure has dropped below the bubble point in both formations. As a result, water injection was initiated. The pressure in all parts of Nubia was restored above bubble point. Aquifer influx is sufficient to support the current withdrawal rates and further water injection is unnecessary. However, Nezzazat has a significantly higher reservoir complexity and therefore, shows a large variation in pressure behavior. It needs water injection to maintain the reservoir pressure above the bubble point in all parts of the reservoir. Based on the flow-unit allocation, the voidage replacement ratio (VRR) was calculated for each area and each layer. Even though the overall VRR in the waterflooded areas is above one, the distribution of the injected water is uneven. Redistributing injected water and ensuring that all the areas and all the layers are adequately supported will help to maximize recovery. The prolonged dip in oil price demands extreme efficiency. Sound reservoir management must not require unreasonable time or manpower. The rapid, automated analysis enables quick identification of the key areas for improvement in reservoir management practices and maximize the value of the asset.