识别使用匿名代理隐藏源IP地址

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2021-11-01 DOI:10.4018/IJDCF.20211101.OA8
Shane Miller, K. Curran, T. Lunney
{"title":"识别使用匿名代理隐藏源IP地址","authors":"Shane Miller, K. Curran, T. Lunney","doi":"10.4018/IJDCF.20211101.OA8","DOIUrl":null,"url":null,"abstract":"The detection of unauthorised users can be problematic for techniques that are available at present if the nefarious actors are using identity hiding tools such as anonymising proxies or virtual private networks (VPNs). This work presents computational models to address the limitations currently experienced in detecting VPN traffic. The experiments conducted to classify OpenVPN usage found that the neural network was able to correctly identify the VPN traffic with an overall accuracy of 93.71%. These results demonstrate a significant advancement in the detection of unauthorised user access with evidence showing that there could be further advances for research in this field particularly in the application of business security where the detection of VPN usage is important to an organization.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the Use of Anonymising Proxies to Conceal Source IP Addresses\",\"authors\":\"Shane Miller, K. Curran, T. Lunney\",\"doi\":\"10.4018/IJDCF.20211101.OA8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of unauthorised users can be problematic for techniques that are available at present if the nefarious actors are using identity hiding tools such as anonymising proxies or virtual private networks (VPNs). This work presents computational models to address the limitations currently experienced in detecting VPN traffic. The experiments conducted to classify OpenVPN usage found that the neural network was able to correctly identify the VPN traffic with an overall accuracy of 93.71%. These results demonstrate a significant advancement in the detection of unauthorised user access with evidence showing that there could be further advances for research in this field particularly in the application of business security where the detection of VPN usage is important to an organization.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDCF.20211101.OA8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20211101.OA8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

如果恶意行为者使用匿名代理或虚拟专用网络(vpn)等身份隐藏工具,那么检测未经授权的用户对于目前可用的技术来说可能会有问题。这项工作提出了计算模型,以解决目前在检测VPN流量方面遇到的限制。对OpenVPN使用情况进行分类的实验发现,神经网络能够正确识别VPN流量,总体准确率为93.71%。这些结果表明,在检测未经授权的用户访问方面取得了重大进展,有证据表明,在这一领域的研究可能会有进一步的进展,特别是在检测VPN使用情况对组织很重要的商业安全应用方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying the Use of Anonymising Proxies to Conceal Source IP Addresses
The detection of unauthorised users can be problematic for techniques that are available at present if the nefarious actors are using identity hiding tools such as anonymising proxies or virtual private networks (VPNs). This work presents computational models to address the limitations currently experienced in detecting VPN traffic. The experiments conducted to classify OpenVPN usage found that the neural network was able to correctly identify the VPN traffic with an overall accuracy of 93.71%. These results demonstrate a significant advancement in the detection of unauthorised user access with evidence showing that there could be further advances for research in this field particularly in the application of business security where the detection of VPN usage is important to an organization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1