基于双向搜索的模糊关联规则挖掘算法FMFFI

Junrui Yang, Xiaowei Hu, Y. Fu
{"title":"基于双向搜索的模糊关联规则挖掘算法FMFFI","authors":"Junrui Yang, Xiaowei Hu, Y. Fu","doi":"10.1109/IHMSC.2015.228","DOIUrl":null,"url":null,"abstract":"Association rules is one of the important studies on data mining, while, the study of quantitative association rules mining is lacking. This paper proposes a fuzzy association rules mining algorithm FMFFI (Fast Mining Fuzzy Frequent Item sets) based on bidirectional search. This algorithm uses FCM clustering technique to map quantitative data sets into fuzzy data sets, and uses the bidirectional search method search from the high-dimension to low-dimension and low-dimension to high-dimension, when search fuzzy frequent item sets to reduce search time and improve the data mining efficiency.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"31 1","pages":"440-443"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Association Rules Mining Algorithm FMFFI Based on Bidirectional Search Technique\",\"authors\":\"Junrui Yang, Xiaowei Hu, Y. Fu\",\"doi\":\"10.1109/IHMSC.2015.228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association rules is one of the important studies on data mining, while, the study of quantitative association rules mining is lacking. This paper proposes a fuzzy association rules mining algorithm FMFFI (Fast Mining Fuzzy Frequent Item sets) based on bidirectional search. This algorithm uses FCM clustering technique to map quantitative data sets into fuzzy data sets, and uses the bidirectional search method search from the high-dimension to low-dimension and low-dimension to high-dimension, when search fuzzy frequent item sets to reduce search time and improve the data mining efficiency.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"31 1\",\"pages\":\"440-443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

关联规则是数据挖掘的重要研究内容之一,而定量关联规则挖掘的研究还比较缺乏。提出了一种基于双向搜索的模糊关联规则挖掘算法FMFFI (Fast mining fuzzy frequency Item sets)。该算法采用FCM聚类技术将定量数据集映射为模糊数据集,在搜索模糊频繁项集时采用从高维到低维、从低维到高维的双向搜索方法,减少了搜索时间,提高了数据挖掘效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy Association Rules Mining Algorithm FMFFI Based on Bidirectional Search Technique
Association rules is one of the important studies on data mining, while, the study of quantitative association rules mining is lacking. This paper proposes a fuzzy association rules mining algorithm FMFFI (Fast Mining Fuzzy Frequent Item sets) based on bidirectional search. This algorithm uses FCM clustering technique to map quantitative data sets into fuzzy data sets, and uses the bidirectional search method search from the high-dimension to low-dimension and low-dimension to high-dimension, when search fuzzy frequent item sets to reduce search time and improve the data mining efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Algorithm for Mining Maximal Frequent Patterns over Data Streams Analysis of Structural Parameters of Metal Multi-convolution Ring Effects of the Plasma Frequency and the Collision Frequency on the Performance of a Smart Plasma Antenna An Efficient Data Transmission Strategy for Cyber-Physical Systems in the Complicated Environment A Multi-objective Optimization Decision Model Assisting the Land-Use Spatial Districting under Hard Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1