1990-2015年中国30万以上人口城市建成区标准化数据集

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2021-09-01 DOI:10.1080/20964471.2021.1950351
Huiping Jiang, Zhongchang Sun, Huadong Guo, Q. Xing, Wenjie Du, G. Cai
{"title":"1990-2015年中国30万以上人口城市建成区标准化数据集","authors":"Huiping Jiang, Zhongchang Sun, Huadong Guo, Q. Xing, Wenjie Du, G. Cai","doi":"10.1080/20964471.2021.1950351","DOIUrl":null,"url":null,"abstract":"ABSTRACT China’s urbanization has attracted a lot of attention due to its unprecedented pace and intensity in terms of land, population, and economic impact. However, due to the lack of consistent and harmonized data, little is known about the patterns and dynamics of the interaction between these different aspects over the past few decades. Along with the implementation of the 2030 Agenda for Sustainable Development, a standardized dataset for assessing the sustainability of urbanization in China is needed. In this paper, we used remote sensing data from multiple sources (time-series of Landsat and Sentinel images) to map the impervious surface area (ISA) at five-year intervals from 1990 to 2015 and then converted the results into a standardized dataset of the built-up area for 433 Chinese cities with 300,000 inhabitants or more. This dataset was produced following the well-established rules adopted by the United Nations (UN). Validation of the ISA maps in urban areas based on the visual interpretation of Google Earth images showed that the average overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA) were 91.24%, 92.58% and 89.65%, respectively. Comparisons with other existing urban built-up area datasets derived from the National Bureau of Statistics of China, the World Bank and UN-habitat indicated that our dataset, namely the standardized urban built-up area dataset for China (SUBAD–China), provides an improved description of the spatiotemporal characteristics of the urbanization process and is especially applicable to a combined analysis of the spatial and socio-economic domains in urban areas. Potential applications of this dataset include combining the spatial expansion and demographic information provided by UN to calculate sustainable development indicators such as SDG 11.3.1. The dataset could also be used in other multidimensional syntheses related to the study of urbanization in China. The published dataset is available at http://www.doi.org/10.11922/sciencedb.j00076.00004.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"17 1","pages":"103 - 126"},"PeriodicalIF":4.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A standardized dataset of built-up areas of China’s cities with populations over 300,000 for the period 1990–2015\",\"authors\":\"Huiping Jiang, Zhongchang Sun, Huadong Guo, Q. Xing, Wenjie Du, G. Cai\",\"doi\":\"10.1080/20964471.2021.1950351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT China’s urbanization has attracted a lot of attention due to its unprecedented pace and intensity in terms of land, population, and economic impact. However, due to the lack of consistent and harmonized data, little is known about the patterns and dynamics of the interaction between these different aspects over the past few decades. Along with the implementation of the 2030 Agenda for Sustainable Development, a standardized dataset for assessing the sustainability of urbanization in China is needed. In this paper, we used remote sensing data from multiple sources (time-series of Landsat and Sentinel images) to map the impervious surface area (ISA) at five-year intervals from 1990 to 2015 and then converted the results into a standardized dataset of the built-up area for 433 Chinese cities with 300,000 inhabitants or more. This dataset was produced following the well-established rules adopted by the United Nations (UN). Validation of the ISA maps in urban areas based on the visual interpretation of Google Earth images showed that the average overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA) were 91.24%, 92.58% and 89.65%, respectively. Comparisons with other existing urban built-up area datasets derived from the National Bureau of Statistics of China, the World Bank and UN-habitat indicated that our dataset, namely the standardized urban built-up area dataset for China (SUBAD–China), provides an improved description of the spatiotemporal characteristics of the urbanization process and is especially applicable to a combined analysis of the spatial and socio-economic domains in urban areas. Potential applications of this dataset include combining the spatial expansion and demographic information provided by UN to calculate sustainable development indicators such as SDG 11.3.1. The dataset could also be used in other multidimensional syntheses related to the study of urbanization in China. The published dataset is available at http://www.doi.org/10.11922/sciencedb.j00076.00004.\",\"PeriodicalId\":8765,\"journal\":{\"name\":\"Big Earth Data\",\"volume\":\"17 1\",\"pages\":\"103 - 126\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Earth Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/20964471.2021.1950351\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1950351","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 13

摘要

中国的城市化以其前所未有的速度和强度在土地、人口和经济影响方面引起了人们的广泛关注。然而,由于缺乏一致和协调的数据,在过去几十年中,人们对这些不同方面之间相互作用的模式和动态知之甚少。随着2030年可持续发展议程的实施,需要一个标准化的数据集来评估中国城市化的可持续性。本文利用多源遥感数据(Landsat和Sentinel影像时间序列),以1990 - 2015年为周期,每隔5年绘制中国433个30万人口以上城市的不透水面(ISA)地图,并将结果转化为标准化的建成区数据集。该数据集是根据联合国(UN)采用的既定规则制作的。基于谷歌地球影像视觉解译的城市地区ISA地图验证结果表明,平均总体精度(OA)、生产者精度(PA)和用户精度(UA)分别为91.24%、92.58%和89.65%。与中国国家统计局、世界银行和联合国人居署的其他现有城市建成区数据集的比较表明,我们的数据集,即中国标准化城市建成区数据集(SUBAD-China),提供了对城市化进程时空特征的改进描述,特别适用于城市地区空间和社会经济领域的综合分析。该数据集的潜在应用包括将联合国提供的空间扩展和人口信息结合起来,计算可持续发展目标11.3.1等可持续发展指标。该数据集也可用于与中国城市化研究相关的其他多维综合。已发布的数据集可在http://www.doi.org/10.11922/sciencedb.j00076.00004上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A standardized dataset of built-up areas of China’s cities with populations over 300,000 for the period 1990–2015
ABSTRACT China’s urbanization has attracted a lot of attention due to its unprecedented pace and intensity in terms of land, population, and economic impact. However, due to the lack of consistent and harmonized data, little is known about the patterns and dynamics of the interaction between these different aspects over the past few decades. Along with the implementation of the 2030 Agenda for Sustainable Development, a standardized dataset for assessing the sustainability of urbanization in China is needed. In this paper, we used remote sensing data from multiple sources (time-series of Landsat and Sentinel images) to map the impervious surface area (ISA) at five-year intervals from 1990 to 2015 and then converted the results into a standardized dataset of the built-up area for 433 Chinese cities with 300,000 inhabitants or more. This dataset was produced following the well-established rules adopted by the United Nations (UN). Validation of the ISA maps in urban areas based on the visual interpretation of Google Earth images showed that the average overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA) were 91.24%, 92.58% and 89.65%, respectively. Comparisons with other existing urban built-up area datasets derived from the National Bureau of Statistics of China, the World Bank and UN-habitat indicated that our dataset, namely the standardized urban built-up area dataset for China (SUBAD–China), provides an improved description of the spatiotemporal characteristics of the urbanization process and is especially applicable to a combined analysis of the spatial and socio-economic domains in urban areas. Potential applications of this dataset include combining the spatial expansion and demographic information provided by UN to calculate sustainable development indicators such as SDG 11.3.1. The dataset could also be used in other multidimensional syntheses related to the study of urbanization in China. The published dataset is available at http://www.doi.org/10.11922/sciencedb.j00076.00004.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1