{"title":"基于BPNN和SFS的超高性能混凝土抗压强度预测学习算法","authors":"Deepak Choudhary","doi":"10.11648/J.MLR.20190402.11","DOIUrl":null,"url":null,"abstract":"This paper presents machine learning algorithms based on back-propagation neural network (BPNN) that employs sequential feature selection (SFS) for predicting the compressive strength of Ultra-High Performance Concrete (UHPC). A database, containing 110 points and eight material constituents, was collected from the literature for the development of models using machine learning techniques. The BPNN and SFS were used interchangeably to identify the relevant features that contributed with the response variable. As a result, the BPNN with the selected features was able to interpret more accurate results (r = 0.991) than the model with all the features (r2 = 0.816). The utilization of ANN modelling made its way into the prediction of fresh and hardened properties of concrete based on given experimental input parameters, whereby several authors developed AI models to predict the compressive strength of normal weight, light weight and recycled concrete. The steps that were are followed in developing a robust and accurate numerical model using SFS include (1) design and validation of ANN model by manipulating the number of neurons and hidden layers; (2) execution of SFS using ANN as a wrapper; and (3) analysis of selected features using both ANN and nonlinear regression. It is concluded that the usage of ANN with SFS provided an improvement to the prediction model’s accuracy, making it a viable tool for machine learning approaches in civil engineering case studies.","PeriodicalId":75238,"journal":{"name":"Transactions on machine learning research","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning Algorithms Using BPNN & SFS for Prediction of Compressive Strength of Ultra-High Performance Concrete\",\"authors\":\"Deepak Choudhary\",\"doi\":\"10.11648/J.MLR.20190402.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents machine learning algorithms based on back-propagation neural network (BPNN) that employs sequential feature selection (SFS) for predicting the compressive strength of Ultra-High Performance Concrete (UHPC). A database, containing 110 points and eight material constituents, was collected from the literature for the development of models using machine learning techniques. The BPNN and SFS were used interchangeably to identify the relevant features that contributed with the response variable. As a result, the BPNN with the selected features was able to interpret more accurate results (r = 0.991) than the model with all the features (r2 = 0.816). The utilization of ANN modelling made its way into the prediction of fresh and hardened properties of concrete based on given experimental input parameters, whereby several authors developed AI models to predict the compressive strength of normal weight, light weight and recycled concrete. The steps that were are followed in developing a robust and accurate numerical model using SFS include (1) design and validation of ANN model by manipulating the number of neurons and hidden layers; (2) execution of SFS using ANN as a wrapper; and (3) analysis of selected features using both ANN and nonlinear regression. It is concluded that the usage of ANN with SFS provided an improvement to the prediction model’s accuracy, making it a viable tool for machine learning approaches in civil engineering case studies.\",\"PeriodicalId\":75238,\"journal\":{\"name\":\"Transactions on machine learning research\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.MLR.20190402.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on machine learning research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MLR.20190402.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Algorithms Using BPNN & SFS for Prediction of Compressive Strength of Ultra-High Performance Concrete
This paper presents machine learning algorithms based on back-propagation neural network (BPNN) that employs sequential feature selection (SFS) for predicting the compressive strength of Ultra-High Performance Concrete (UHPC). A database, containing 110 points and eight material constituents, was collected from the literature for the development of models using machine learning techniques. The BPNN and SFS were used interchangeably to identify the relevant features that contributed with the response variable. As a result, the BPNN with the selected features was able to interpret more accurate results (r = 0.991) than the model with all the features (r2 = 0.816). The utilization of ANN modelling made its way into the prediction of fresh and hardened properties of concrete based on given experimental input parameters, whereby several authors developed AI models to predict the compressive strength of normal weight, light weight and recycled concrete. The steps that were are followed in developing a robust and accurate numerical model using SFS include (1) design and validation of ANN model by manipulating the number of neurons and hidden layers; (2) execution of SFS using ANN as a wrapper; and (3) analysis of selected features using both ANN and nonlinear regression. It is concluded that the usage of ANN with SFS provided an improvement to the prediction model’s accuracy, making it a viable tool for machine learning approaches in civil engineering case studies.