具有bregman散度的变分非刚性配准

Daniela Portes L. Ferreira, Eraldo Ribeiro, C. Barcelos
{"title":"具有bregman散度的变分非刚性配准","authors":"Daniela Portes L. Ferreira, Eraldo Ribeiro, C. Barcelos","doi":"10.1145/3019612.3019646","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new energy functional that generalizes the variational method for non-rigid image registration. Our new functional uses the Bregman divergence as a similarity measure. The registration method presented by Fisher and Modersitzki in [5] is an special case in our approach. We show that the variational registration method can be applied to arbitrary Bregman divergences. This result is relevant because these divergences include a large number of useful similarity functions, such as the square of the Euclidean distance, the divergence KL, Logistic loss, the Mahalanobis distance, Itakura-Saito divergence and the Generalized I-divergence. The Euler-Lagrange and the flow equations for the proposed functional were deduced and used to minimize it. Our experiments show that the new functional can determine the deformation field for the images registration obtained from different scans or modalities. The image registration under the Bregman divergences performed better than when using the Euclidean distance as the similarity measure.","PeriodicalId":20728,"journal":{"name":"Proceedings of the Symposium on Applied Computing","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational non rigid registration with bregman divergences\",\"authors\":\"Daniela Portes L. Ferreira, Eraldo Ribeiro, C. Barcelos\",\"doi\":\"10.1145/3019612.3019646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new energy functional that generalizes the variational method for non-rigid image registration. Our new functional uses the Bregman divergence as a similarity measure. The registration method presented by Fisher and Modersitzki in [5] is an special case in our approach. We show that the variational registration method can be applied to arbitrary Bregman divergences. This result is relevant because these divergences include a large number of useful similarity functions, such as the square of the Euclidean distance, the divergence KL, Logistic loss, the Mahalanobis distance, Itakura-Saito divergence and the Generalized I-divergence. The Euler-Lagrange and the flow equations for the proposed functional were deduced and used to minimize it. Our experiments show that the new functional can determine the deformation field for the images registration obtained from different scans or modalities. The image registration under the Bregman divergences performed better than when using the Euclidean distance as the similarity measure.\",\"PeriodicalId\":20728,\"journal\":{\"name\":\"Proceedings of the Symposium on Applied Computing\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Applied Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3019612.3019646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3019612.3019646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的能量泛函,推广了非刚性图像配准的变分方法。我们的新函数使用Bregman散度作为相似性度量。Fisher和Modersitzki在[5]中提出的配准方法是我们方法中的一个特例。我们证明了变分配准方法可以应用于任意Bregman散度。这个结果是相关的,因为这些散度包括大量有用的相似函数,如欧几里得距离的平方,散度KL, Logistic损失,Mahalanobis距离,Itakura-Saito散度和广义i散度。推导了该泛函的欧拉-拉格朗日方程和流动方程,并对其进行了最小化。实验表明,该函数可以确定不同扫描或模态图像配准的变形场。布雷格曼散度下的图像配准效果优于欧氏距离下的配准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variational non rigid registration with bregman divergences
In this paper, we propose a new energy functional that generalizes the variational method for non-rigid image registration. Our new functional uses the Bregman divergence as a similarity measure. The registration method presented by Fisher and Modersitzki in [5] is an special case in our approach. We show that the variational registration method can be applied to arbitrary Bregman divergences. This result is relevant because these divergences include a large number of useful similarity functions, such as the square of the Euclidean distance, the divergence KL, Logistic loss, the Mahalanobis distance, Itakura-Saito divergence and the Generalized I-divergence. The Euler-Lagrange and the flow equations for the proposed functional were deduced and used to minimize it. Our experiments show that the new functional can determine the deformation field for the images registration obtained from different scans or modalities. The image registration under the Bregman divergences performed better than when using the Euclidean distance as the similarity measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tarski Handling bitcoin conflicts through a glimpse of structure Multi-CNN and decision tree based driving behavior evaluation Session details: WT - web technologies track Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1