基于用户重要性的严格规则的社交媒体新闻项目排名:一种社会计算方法

K. Ntalianis, Abdel-badeeh M. Salem
{"title":"基于用户重要性的严格规则的社交媒体新闻项目排名:一种社会计算方法","authors":"K. Ntalianis, Abdel-badeeh M. Salem","doi":"10.1109/INTELCIS.2015.7397269","DOIUrl":null,"url":null,"abstract":"In this paper an innovative social media news items ranking scheme is proposed. The proposed unsupervised architecture takes into consideration user-content interactions, since social media posts receive likes, comments and shares from friends and other users. Additionally the importance of each user is modeled, based on an innovative algorithm that borrows ideas from the PageRank algorithm. Finally, a novel content ranking component is introduced, which ranks posted news items based on a social computing method, driven by the importance of the social network users that interact with them. Initial experiments on real life social networks news items illustrate the promising performance of the proposed architecture. Additionally comparisons with three different ranking ways are provided (SUMF, RSN-CO and RSN-nCO), in terms of user satisfaction.","PeriodicalId":6478,"journal":{"name":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"45 1","pages":"27-33"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ranking of news items in rule-stringent social media based on users' importance: A social computing approach\",\"authors\":\"K. Ntalianis, Abdel-badeeh M. Salem\",\"doi\":\"10.1109/INTELCIS.2015.7397269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an innovative social media news items ranking scheme is proposed. The proposed unsupervised architecture takes into consideration user-content interactions, since social media posts receive likes, comments and shares from friends and other users. Additionally the importance of each user is modeled, based on an innovative algorithm that borrows ideas from the PageRank algorithm. Finally, a novel content ranking component is introduced, which ranks posted news items based on a social computing method, driven by the importance of the social network users that interact with them. Initial experiments on real life social networks news items illustrate the promising performance of the proposed architecture. Additionally comparisons with three different ranking ways are provided (SUMF, RSN-CO and RSN-nCO), in terms of user satisfaction.\",\"PeriodicalId\":6478,\"journal\":{\"name\":\"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"volume\":\"45 1\",\"pages\":\"27-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELCIS.2015.7397269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2015.7397269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种创新的社交媒体新闻排序方案。提议的无监督架构考虑了用户与内容的交互,因为社交媒体帖子会收到朋友和其他用户的喜欢、评论和分享。此外,基于借鉴PageRank算法的创新算法,对每个用户的重要性进行建模。最后,介绍了一种新颖的内容排名组件,该组件基于社交计算方法,根据与之交互的社交网络用户的重要性对发布的新闻进行排名。对现实生活中的社交网络新闻项目的初步实验表明,所提出的体系结构具有良好的性能。此外,还比较了三种不同的排名方式(SUMF、RSN-CO和RSN-nCO)在用户满意度方面的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ranking of news items in rule-stringent social media based on users' importance: A social computing approach
In this paper an innovative social media news items ranking scheme is proposed. The proposed unsupervised architecture takes into consideration user-content interactions, since social media posts receive likes, comments and shares from friends and other users. Additionally the importance of each user is modeled, based on an innovative algorithm that borrows ideas from the PageRank algorithm. Finally, a novel content ranking component is introduced, which ranks posted news items based on a social computing method, driven by the importance of the social network users that interact with them. Initial experiments on real life social networks news items illustrate the promising performance of the proposed architecture. Additionally comparisons with three different ranking ways are provided (SUMF, RSN-CO and RSN-nCO), in terms of user satisfaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the use of probabilistic model-checking for the verification of prognostics applications Prospective, knowledge based clinical risk analysis: The OPT-model Partial deduction in predicate calculus as a tool for artificial intelligence problem complexity decreasing XML summarization: A survey Finding the pin in the haystack: A Bot Traceback service for public clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1