大型系统管理中的性能异常和变化点检测

Igor A. Trubin
{"title":"大型系统管理中的性能异常和变化点检测","authors":"Igor A. Trubin","doi":"10.1145/3375555.3384934","DOIUrl":null,"url":null,"abstract":"We begin by presenting a short overview of the classical Statistical Process Control based Anomaly Detection techniques and tools including Multivariate Adaptive Statistical Filtering, Statistical Exception Detection System, Exception Value meta-metric based Change Point Detection, control chart, business driven massive prediction and methods of using them to manage large-scale systems (with real examples of applying that to large financial companies) such as on-prem servers fleet, or massive clouds. Then we will turn to the presentation of modern techniques of anomaly and normality detection, such as deep learning and entropy-based anomalous pattern detections (also successfully tested against a large amount of real performance data of a large bank).","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Anomaly and Change Point Detection For Large-Scale System Management\",\"authors\":\"Igor A. Trubin\",\"doi\":\"10.1145/3375555.3384934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We begin by presenting a short overview of the classical Statistical Process Control based Anomaly Detection techniques and tools including Multivariate Adaptive Statistical Filtering, Statistical Exception Detection System, Exception Value meta-metric based Change Point Detection, control chart, business driven massive prediction and methods of using them to manage large-scale systems (with real examples of applying that to large financial companies) such as on-prem servers fleet, or massive clouds. Then we will turn to the presentation of modern techniques of anomaly and normality detection, such as deep learning and entropy-based anomalous pattern detections (also successfully tested against a large amount of real performance data of a large bank).\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375555.3384934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375555.3384934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们首先简要介绍了经典的基于统计过程控制的异常检测技术和工具,包括多元自适应统计过滤、统计异常检测系统、基于异常值元度量的变化点检测、控制图、业务驱动的大规模预测以及使用它们管理大型系统的方法(并将其应用于大型金融公司的真实示例),如本地服务器舰队、或者巨大的云。然后,我们将转向介绍异常和正常检测的现代技术,例如深度学习和基于熵的异常模式检测(也成功地针对大型银行的大量真实性能数据进行了测试)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Anomaly and Change Point Detection For Large-Scale System Management
We begin by presenting a short overview of the classical Statistical Process Control based Anomaly Detection techniques and tools including Multivariate Adaptive Statistical Filtering, Statistical Exception Detection System, Exception Value meta-metric based Change Point Detection, control chart, business driven massive prediction and methods of using them to manage large-scale systems (with real examples of applying that to large financial companies) such as on-prem servers fleet, or massive clouds. Then we will turn to the presentation of modern techniques of anomaly and normality detection, such as deep learning and entropy-based anomalous pattern detections (also successfully tested against a large amount of real performance data of a large bank).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sampling-based Label Propagation for Balanced Graph Partitioning ICPE '22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9 - 13, 2022 The Role of Analytical Models in the Engineering and Science of Computer Systems Enhancing Observability of Serverless Computing with the Serverless Application Analytics Framework Towards Elastic and Sustainable Data Stream Processing on Edge Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1