{"title":"大型系统管理中的性能异常和变化点检测","authors":"Igor A. Trubin","doi":"10.1145/3375555.3384934","DOIUrl":null,"url":null,"abstract":"We begin by presenting a short overview of the classical Statistical Process Control based Anomaly Detection techniques and tools including Multivariate Adaptive Statistical Filtering, Statistical Exception Detection System, Exception Value meta-metric based Change Point Detection, control chart, business driven massive prediction and methods of using them to manage large-scale systems (with real examples of applying that to large financial companies) such as on-prem servers fleet, or massive clouds. Then we will turn to the presentation of modern techniques of anomaly and normality detection, such as deep learning and entropy-based anomalous pattern detections (also successfully tested against a large amount of real performance data of a large bank).","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Anomaly and Change Point Detection For Large-Scale System Management\",\"authors\":\"Igor A. Trubin\",\"doi\":\"10.1145/3375555.3384934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We begin by presenting a short overview of the classical Statistical Process Control based Anomaly Detection techniques and tools including Multivariate Adaptive Statistical Filtering, Statistical Exception Detection System, Exception Value meta-metric based Change Point Detection, control chart, business driven massive prediction and methods of using them to manage large-scale systems (with real examples of applying that to large financial companies) such as on-prem servers fleet, or massive clouds. Then we will turn to the presentation of modern techniques of anomaly and normality detection, such as deep learning and entropy-based anomalous pattern detections (also successfully tested against a large amount of real performance data of a large bank).\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375555.3384934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375555.3384934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Anomaly and Change Point Detection For Large-Scale System Management
We begin by presenting a short overview of the classical Statistical Process Control based Anomaly Detection techniques and tools including Multivariate Adaptive Statistical Filtering, Statistical Exception Detection System, Exception Value meta-metric based Change Point Detection, control chart, business driven massive prediction and methods of using them to manage large-scale systems (with real examples of applying that to large financial companies) such as on-prem servers fleet, or massive clouds. Then we will turn to the presentation of modern techniques of anomaly and normality detection, such as deep learning and entropy-based anomalous pattern detections (also successfully tested against a large amount of real performance data of a large bank).