基于条件互信息和非线性预测的时间序列有向相关性估计

Payam Shahsavari Baboukani, C. Graversen, Jan Østergaard
{"title":"基于条件互信息和非线性预测的时间序列有向相关性估计","authors":"Payam Shahsavari Baboukani, C. Graversen, Jan Østergaard","doi":"10.23919/Eusipco47968.2020.9287592","DOIUrl":null,"url":null,"abstract":"It is well-known that estimation of the directed dependency between high-dimensional data sequences suffers from the \"curse of dimensionality\" problem. To reduce the dimensionality of the data, and thereby improve the accuracy of the estimation, we propose a new progressive input variable selection technique. Specifically, in each iteration, the remaining input variables are ranked according to a weighted sum of the amount of new information provided by the variable and the variable’s prediction accuracy. Then, the highest ranked variable is included, if it is significant enough to improve the accuracy of the prediction. A simulation study on synthetic non-linear autoregressive and Henon maps data, shows a significant improvement over existing estimator, especially in the case of small amounts of high-dimensional and highly correlated data.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"5 1","pages":"2388-2392"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimation of Directed Dependencies in Time Series Using Conditional Mutual Information and Non-linear Prediction\",\"authors\":\"Payam Shahsavari Baboukani, C. Graversen, Jan Østergaard\",\"doi\":\"10.23919/Eusipco47968.2020.9287592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that estimation of the directed dependency between high-dimensional data sequences suffers from the \\\"curse of dimensionality\\\" problem. To reduce the dimensionality of the data, and thereby improve the accuracy of the estimation, we propose a new progressive input variable selection technique. Specifically, in each iteration, the remaining input variables are ranked according to a weighted sum of the amount of new information provided by the variable and the variable’s prediction accuracy. Then, the highest ranked variable is included, if it is significant enough to improve the accuracy of the prediction. A simulation study on synthetic non-linear autoregressive and Henon maps data, shows a significant improvement over existing estimator, especially in the case of small amounts of high-dimensional and highly correlated data.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"5 1\",\"pages\":\"2388-2392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

众所周知,高维数据序列之间的有向依赖估计存在“维数诅咒”问题。为了降低数据的维数,从而提高估计的精度,我们提出了一种新的渐进式输入变量选择技术。具体来说,在每次迭代中,根据变量提供的新信息量和变量的预测精度的加权和,对剩余的输入变量进行排序。然后,如果排名最高的变量显著到足以提高预测的准确性,则将其包括在内。对合成非线性自回归和Henon地图数据的仿真研究表明,该估计器比现有估计器有了显著的改进,特别是在少量高维和高度相关数据的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Directed Dependencies in Time Series Using Conditional Mutual Information and Non-linear Prediction
It is well-known that estimation of the directed dependency between high-dimensional data sequences suffers from the "curse of dimensionality" problem. To reduce the dimensionality of the data, and thereby improve the accuracy of the estimation, we propose a new progressive input variable selection technique. Specifically, in each iteration, the remaining input variables are ranked according to a weighted sum of the amount of new information provided by the variable and the variable’s prediction accuracy. Then, the highest ranked variable is included, if it is significant enough to improve the accuracy of the prediction. A simulation study on synthetic non-linear autoregressive and Henon maps data, shows a significant improvement over existing estimator, especially in the case of small amounts of high-dimensional and highly correlated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1