Hongjun Wang, Dexiong Li, Zhuoqun Zhao, Hui-juan Qi, Lina Liu
{"title":"基于改进粒子群算法的BP神经网络在高炉温度预测中的应用","authors":"Hongjun Wang, Dexiong Li, Zhuoqun Zhao, Hui-juan Qi, Lina Liu","doi":"10.1109/ICECENG.2011.6057958","DOIUrl":null,"url":null,"abstract":"The BP network has the disadvantages such as low learning efficiency, low speed of convergence, easily falling into the local minimum state, poor ability to adapt, ect. For PSO algorithm, it is fast for convergence, especially at the initial stage, simple for the computing, and is easy to implement. Compared with the genetic algorithms, it does have not the complex operations of hybrid codecs, mutation, so it is a good optimization algorithm. However, PSO algorithm also has some shortcomings it is more and more slow for convergence rate at the late evolution of the algorithm. In this paper, a new BP Neural Network based on improved Particle Swarm Optimization (PSO) is proposed. The convergence speed of this algorithm and the capacity of searching global extremum is increased through adjusting the adaptive capacity of learning factor. The simulation results illustrate that the improved PSO is superior to the standard BP algorithm and particle swarm optimization.","PeriodicalId":6336,"journal":{"name":"2011 International Conference on Electrical and Control Engineering","volume":"26 1","pages":"2626-2629"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The application of BP Neural Network based on improved PSO in BF temperature forecast\",\"authors\":\"Hongjun Wang, Dexiong Li, Zhuoqun Zhao, Hui-juan Qi, Lina Liu\",\"doi\":\"10.1109/ICECENG.2011.6057958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The BP network has the disadvantages such as low learning efficiency, low speed of convergence, easily falling into the local minimum state, poor ability to adapt, ect. For PSO algorithm, it is fast for convergence, especially at the initial stage, simple for the computing, and is easy to implement. Compared with the genetic algorithms, it does have not the complex operations of hybrid codecs, mutation, so it is a good optimization algorithm. However, PSO algorithm also has some shortcomings it is more and more slow for convergence rate at the late evolution of the algorithm. In this paper, a new BP Neural Network based on improved Particle Swarm Optimization (PSO) is proposed. The convergence speed of this algorithm and the capacity of searching global extremum is increased through adjusting the adaptive capacity of learning factor. The simulation results illustrate that the improved PSO is superior to the standard BP algorithm and particle swarm optimization.\",\"PeriodicalId\":6336,\"journal\":{\"name\":\"2011 International Conference on Electrical and Control Engineering\",\"volume\":\"26 1\",\"pages\":\"2626-2629\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Electrical and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECENG.2011.6057958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Electrical and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECENG.2011.6057958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The application of BP Neural Network based on improved PSO in BF temperature forecast
The BP network has the disadvantages such as low learning efficiency, low speed of convergence, easily falling into the local minimum state, poor ability to adapt, ect. For PSO algorithm, it is fast for convergence, especially at the initial stage, simple for the computing, and is easy to implement. Compared with the genetic algorithms, it does have not the complex operations of hybrid codecs, mutation, so it is a good optimization algorithm. However, PSO algorithm also has some shortcomings it is more and more slow for convergence rate at the late evolution of the algorithm. In this paper, a new BP Neural Network based on improved Particle Swarm Optimization (PSO) is proposed. The convergence speed of this algorithm and the capacity of searching global extremum is increased through adjusting the adaptive capacity of learning factor. The simulation results illustrate that the improved PSO is superior to the standard BP algorithm and particle swarm optimization.