{"title":"电子烟液对口腔共生链球菌群落生物膜形成和生长的机制影响:调味剂的作用","authors":"Christina Xu, D. Palazzolo, Giancarlo A. Cuadra","doi":"10.3390/dj10050085","DOIUrl":null,"url":null,"abstract":"Abstract Background: Vaping has become a global health concern. As research continues, more studies are beginning to question the relative safety of E-liquid flavoring additives. The oral cavity is the first site of exposure to E-liquid aerosol, making it critical for investigation. Because of the importance of commensal bacterial biofilms for oral health, we sought to explore the effects of E-liquids ± flavors on the formation and growth of single- and multi-species biofilms and to investigate the mechanism of inhibition. Methods: Quantitative and confocal biofilm analysis, death curves, and colony-forming units (CFU) were evaluated with flavorless and flavored (tobacco, menthol, cinnamon, strawberry, blueberry) E-liquids using four strains of oral commensal bacteria (Streptococcus gordonii, Streptococcus intermedius, Streptococcus mitis, and Streptococcus oralis). Results: All flavoring agents show a dose-dependent inhibition in the growth of single-species and multi-species biofilms. Furthermore, CFUs, death curves, and light microscopy show that flavoring agents have a bactericidal mode of inhibition on the growth of these oral streptococci. Conclusions: These results show that flavored, rather than unflavored, E-liquids are more detrimental to biofilm formation and growth of oral commensal bacteria. Consequently, E-liquid flavorings agents could pose risks to the oral microenvironment, and by extension, to systemic health.","PeriodicalId":47284,"journal":{"name":"Open Dentistry Journal","volume":"37 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanistic Effects of E-Liquids on Biofilm Formation and Growth of Oral Commensal Streptococcal Communities: Effect of Flavoring Agents\",\"authors\":\"Christina Xu, D. Palazzolo, Giancarlo A. Cuadra\",\"doi\":\"10.3390/dj10050085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background: Vaping has become a global health concern. As research continues, more studies are beginning to question the relative safety of E-liquid flavoring additives. The oral cavity is the first site of exposure to E-liquid aerosol, making it critical for investigation. Because of the importance of commensal bacterial biofilms for oral health, we sought to explore the effects of E-liquids ± flavors on the formation and growth of single- and multi-species biofilms and to investigate the mechanism of inhibition. Methods: Quantitative and confocal biofilm analysis, death curves, and colony-forming units (CFU) were evaluated with flavorless and flavored (tobacco, menthol, cinnamon, strawberry, blueberry) E-liquids using four strains of oral commensal bacteria (Streptococcus gordonii, Streptococcus intermedius, Streptococcus mitis, and Streptococcus oralis). Results: All flavoring agents show a dose-dependent inhibition in the growth of single-species and multi-species biofilms. Furthermore, CFUs, death curves, and light microscopy show that flavoring agents have a bactericidal mode of inhibition on the growth of these oral streptococci. Conclusions: These results show that flavored, rather than unflavored, E-liquids are more detrimental to biofilm formation and growth of oral commensal bacteria. Consequently, E-liquid flavorings agents could pose risks to the oral microenvironment, and by extension, to systemic health.\",\"PeriodicalId\":47284,\"journal\":{\"name\":\"Open Dentistry Journal\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Dentistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dj10050085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj10050085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Mechanistic Effects of E-Liquids on Biofilm Formation and Growth of Oral Commensal Streptococcal Communities: Effect of Flavoring Agents
Abstract Background: Vaping has become a global health concern. As research continues, more studies are beginning to question the relative safety of E-liquid flavoring additives. The oral cavity is the first site of exposure to E-liquid aerosol, making it critical for investigation. Because of the importance of commensal bacterial biofilms for oral health, we sought to explore the effects of E-liquids ± flavors on the formation and growth of single- and multi-species biofilms and to investigate the mechanism of inhibition. Methods: Quantitative and confocal biofilm analysis, death curves, and colony-forming units (CFU) were evaluated with flavorless and flavored (tobacco, menthol, cinnamon, strawberry, blueberry) E-liquids using four strains of oral commensal bacteria (Streptococcus gordonii, Streptococcus intermedius, Streptococcus mitis, and Streptococcus oralis). Results: All flavoring agents show a dose-dependent inhibition in the growth of single-species and multi-species biofilms. Furthermore, CFUs, death curves, and light microscopy show that flavoring agents have a bactericidal mode of inhibition on the growth of these oral streptococci. Conclusions: These results show that flavored, rather than unflavored, E-liquids are more detrimental to biofilm formation and growth of oral commensal bacteria. Consequently, E-liquid flavorings agents could pose risks to the oral microenvironment, and by extension, to systemic health.