A. Diaconu, A. Rusu, L. Nita, A. Chiriac, I. Neamţu
{"title":"以核黄素为低分子质量凝胶制备具有螺缩醛基团的新型网状结构","authors":"A. Diaconu, A. Rusu, L. Nita, A. Chiriac, I. Neamţu","doi":"10.6000/1929-5995.2017.06.04.3","DOIUrl":null,"url":null,"abstract":"Abstract: The present investigation presents the synthesis and properties of a new nanogel structure based on poly(itaconic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5] undecane) and a low molecular mass gelator, namely riboflavin. The chemical structure of the new network system was confirmed by FTIR and 1 H-NMR. The sensitivity of the new structures was evaluated by determining the hydrodynamic radius in interdependence with environmental conditions. The investigation was realized as nanogels are considered very attractive carrier systems owing to their nanometer-sized dimensions, which allow for holding large amounts of solvent and incorporating specific compounds in their nanoscale three-dimensional polymer networks.","PeriodicalId":16998,"journal":{"name":"Journal of Research Updates in Polymer Science","volume":"1 1","pages":"134-141"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Riboflavin as Low Molecular Mass Gelator for the Preparation of a New Network Structure Having Spiroacetal Moieties\",\"authors\":\"A. Diaconu, A. Rusu, L. Nita, A. Chiriac, I. Neamţu\",\"doi\":\"10.6000/1929-5995.2017.06.04.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The present investigation presents the synthesis and properties of a new nanogel structure based on poly(itaconic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5] undecane) and a low molecular mass gelator, namely riboflavin. The chemical structure of the new network system was confirmed by FTIR and 1 H-NMR. The sensitivity of the new structures was evaluated by determining the hydrodynamic radius in interdependence with environmental conditions. The investigation was realized as nanogels are considered very attractive carrier systems owing to their nanometer-sized dimensions, which allow for holding large amounts of solvent and incorporating specific compounds in their nanoscale three-dimensional polymer networks.\",\"PeriodicalId\":16998,\"journal\":{\"name\":\"Journal of Research Updates in Polymer Science\",\"volume\":\"1 1\",\"pages\":\"134-141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research Updates in Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-5995.2017.06.04.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research Updates in Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-5995.2017.06.04.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Riboflavin as Low Molecular Mass Gelator for the Preparation of a New Network Structure Having Spiroacetal Moieties
Abstract: The present investigation presents the synthesis and properties of a new nanogel structure based on poly(itaconic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5] undecane) and a low molecular mass gelator, namely riboflavin. The chemical structure of the new network system was confirmed by FTIR and 1 H-NMR. The sensitivity of the new structures was evaluated by determining the hydrodynamic radius in interdependence with environmental conditions. The investigation was realized as nanogels are considered very attractive carrier systems owing to their nanometer-sized dimensions, which allow for holding large amounts of solvent and incorporating specific compounds in their nanoscale three-dimensional polymer networks.