基于改进帧差法和深度学习的秸秆燃烧检测方法

Shiwei Wang, Feng Yu, Changlong Zhou, Minghua Jiang
{"title":"基于改进帧差法和深度学习的秸秆燃烧检测方法","authors":"Shiwei Wang, Feng Yu, Changlong Zhou, Minghua Jiang","doi":"10.1109/ICIVC50857.2020.9177456","DOIUrl":null,"url":null,"abstract":"Straw burning has serious pollution to the air. Only by finding the location of straw burning can we stop the pollution caused by straw burning. The detection of straw burning can start from two aspects: flame and smoke. Because straw burning is usually accompanied by strong smoke, we decide to determine whether there is straw burning through smoke. The existing smoke detection methods all has various shortcomings, such as not using the dynamic characteristics of smoke, and inefficient and complex processing. Therefore, this paper proposes a smoke detection method based on improved frame difference method and Faster R-CNN. For smoke detection, first uses the improved frame difference method to extracts candidate regions, and then uses the Faster R-CNN model for smoke detection. For the extracted candidate areas, this paper proposes a variety of schemes to expands the candidate areas to ensure that the complete smoke information could be obtained to the maximum extent. Through the experiment, we get the best expansion scheme. Experiments shows that the improved frame difference method has obvious effects, compared to Faster R-CNN model method, the maximum accuracy rate has improved by 10.6%.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"37 1","pages":"29-33"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Straw Burning Detection Method Based on Improved Frame Difference Method and Deep Learning\",\"authors\":\"Shiwei Wang, Feng Yu, Changlong Zhou, Minghua Jiang\",\"doi\":\"10.1109/ICIVC50857.2020.9177456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Straw burning has serious pollution to the air. Only by finding the location of straw burning can we stop the pollution caused by straw burning. The detection of straw burning can start from two aspects: flame and smoke. Because straw burning is usually accompanied by strong smoke, we decide to determine whether there is straw burning through smoke. The existing smoke detection methods all has various shortcomings, such as not using the dynamic characteristics of smoke, and inefficient and complex processing. Therefore, this paper proposes a smoke detection method based on improved frame difference method and Faster R-CNN. For smoke detection, first uses the improved frame difference method to extracts candidate regions, and then uses the Faster R-CNN model for smoke detection. For the extracted candidate areas, this paper proposes a variety of schemes to expands the candidate areas to ensure that the complete smoke information could be obtained to the maximum extent. Through the experiment, we get the best expansion scheme. Experiments shows that the improved frame difference method has obvious effects, compared to Faster R-CNN model method, the maximum accuracy rate has improved by 10.6%.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"37 1\",\"pages\":\"29-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

秸秆焚烧对空气污染严重。只有找到秸秆焚烧的地点,才能制止秸秆焚烧造成的污染。秸秆燃烧的检测可以从火焰和烟雾两个方面入手。因为秸秆燃烧通常伴随着强烈的烟雾,所以我们决定通过烟雾来判断是否有秸秆燃烧。现有的烟雾检测方法都存在着不利用烟雾的动态特性、处理效率低、复杂等缺点。因此,本文提出了一种基于改进帧差法和Faster R-CNN的烟雾检测方法。对于烟雾检测,首先使用改进的帧差方法提取候选区域,然后使用Faster R-CNN模型进行烟雾检测。对于提取的候选区域,本文提出了多种方案来扩大候选区域,以确保最大程度地获得完整的烟雾信息。通过实验,得出了最佳的扩展方案。实验表明,改进的帧差方法效果明显,与Faster R-CNN模型方法相比,最大准确率提高了10.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Straw Burning Detection Method Based on Improved Frame Difference Method and Deep Learning
Straw burning has serious pollution to the air. Only by finding the location of straw burning can we stop the pollution caused by straw burning. The detection of straw burning can start from two aspects: flame and smoke. Because straw burning is usually accompanied by strong smoke, we decide to determine whether there is straw burning through smoke. The existing smoke detection methods all has various shortcomings, such as not using the dynamic characteristics of smoke, and inefficient and complex processing. Therefore, this paper proposes a smoke detection method based on improved frame difference method and Faster R-CNN. For smoke detection, first uses the improved frame difference method to extracts candidate regions, and then uses the Faster R-CNN model for smoke detection. For the extracted candidate areas, this paper proposes a variety of schemes to expands the candidate areas to ensure that the complete smoke information could be obtained to the maximum extent. Through the experiment, we get the best expansion scheme. Experiments shows that the improved frame difference method has obvious effects, compared to Faster R-CNN model method, the maximum accuracy rate has improved by 10.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Multi-object Tracking with Siamese Network and Optical Flow Research on Product Style Design Based on Genetic Algorithm Super-Resolution Reconstruction Algorithm of Target Image Based on Learning Background Air Quality Inference with Deep Convolutional Conditional Random Field Feature Point Extraction and Matching Method Based on Akaze in Illumination Invariant Color Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1