{"title":"复杂复杂的景观","authors":"Jaron Kent-Dobias, J. Kurchan","doi":"10.1103/PHYSREVRESEARCH.3.023064","DOIUrl":null,"url":null,"abstract":"We study the saddle-points of the $p$-spin model -- the best understood example of a `complex' (rugged) landscape -- when its $N$ variables are complex. These points are the solutions to a system of $N$ random equations of degree $p-1$. We solve for $\\overline{\\mathcal N}$, the number of solutions averaged over randomness in the $N\\to\\infty$ limit. We find that it saturates the B\\'ezout bound $\\log\\overline{\\mathcal N}~N\\log(p-1)$. The Hessian of each saddle is given by a random matrix of the form $C^\\dagger C$, where $C$ is a complex symmetric Gaussian matrix with a shift to its diagonal. Its spectrum has a transition where a gap develops that generalizes the notion of `threshold level' well-known in the real problem. The results from the real problem are recovered in the limit of real parameters. In this case, only the square-root of the total number of solutions are real. In terms of the complex energy, the solutions are divided into sectors where the saddles have different topological properties.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Complex complex landscapes\",\"authors\":\"Jaron Kent-Dobias, J. Kurchan\",\"doi\":\"10.1103/PHYSREVRESEARCH.3.023064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the saddle-points of the $p$-spin model -- the best understood example of a `complex' (rugged) landscape -- when its $N$ variables are complex. These points are the solutions to a system of $N$ random equations of degree $p-1$. We solve for $\\\\overline{\\\\mathcal N}$, the number of solutions averaged over randomness in the $N\\\\to\\\\infty$ limit. We find that it saturates the B\\\\'ezout bound $\\\\log\\\\overline{\\\\mathcal N}~N\\\\log(p-1)$. The Hessian of each saddle is given by a random matrix of the form $C^\\\\dagger C$, where $C$ is a complex symmetric Gaussian matrix with a shift to its diagonal. Its spectrum has a transition where a gap develops that generalizes the notion of `threshold level' well-known in the real problem. The results from the real problem are recovered in the limit of real parameters. In this case, only the square-root of the total number of solutions are real. In terms of the complex energy, the solutions are divided into sectors where the saddles have different topological properties.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.3.023064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.023064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the saddle-points of the $p$-spin model -- the best understood example of a `complex' (rugged) landscape -- when its $N$ variables are complex. These points are the solutions to a system of $N$ random equations of degree $p-1$. We solve for $\overline{\mathcal N}$, the number of solutions averaged over randomness in the $N\to\infty$ limit. We find that it saturates the B\'ezout bound $\log\overline{\mathcal N}~N\log(p-1)$. The Hessian of each saddle is given by a random matrix of the form $C^\dagger C$, where $C$ is a complex symmetric Gaussian matrix with a shift to its diagonal. Its spectrum has a transition where a gap develops that generalizes the notion of `threshold level' well-known in the real problem. The results from the real problem are recovered in the limit of real parameters. In this case, only the square-root of the total number of solutions are real. In terms of the complex energy, the solutions are divided into sectors where the saddles have different topological properties.