数据计算器:从第一原则和学习成本模型出发的数据结构设计和成本综合

Stratos Idreos, Konstantinos Zoumpatianos, Brian Hentschel, Michael S. Kester, Demi Guo
{"title":"数据计算器:从第一原则和学习成本模型出发的数据结构设计和成本综合","authors":"Stratos Idreos, Konstantinos Zoumpatianos, Brian Hentschel, Michael S. Kester, Demi Guo","doi":"10.1145/3183713.3199671","DOIUrl":null,"url":null,"abstract":"Data structures are critical in any data-driven scenario, but they are notoriously hard to design due to a massive design space and the dependence of performance on workload and hardware which evolve continuously. We present a design engine, the Data Calculator, which enables interactive and semi-automated design of data structures. It brings two innovations. First, it offers a set of fine-grained design primitives that capture the first principles of data layout design: how data structure nodes lay data out, and how they are positioned relative to each other. This allows for a structured description of the universe of possible data structure designs that can be synthesized as combinations of those primitives. The second innovation is computation of performance using learned cost models. These models are trained on diverse hardware and data profiles and capture the cost properties of fundamental data access primitives (e.g., random access). With these models, we synthesize the performance cost of complex operations on arbitrary data structure designs without having to: 1) implement the data structure, 2) run the workload, or even 3) access the target hardware. We demonstrate that the Data Calculator can assist data structure designers and researchers by accurately answering rich what-if design questions on the order of a few seconds or minutes, i.e., computing how the performance (response time) of a given data structure design is impacted by variations in the: 1) design, 2) hardware, 3) data, and 4) query workloads. This makes it effortless to test numerous designs and ideas before embarking on lengthy implementation, deployment, and hardware acquisition steps. We also demonstrate that the Data Calculator can synthesize entirely new designs, auto-complete partial designs, and detect suboptimal design choices.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"The Data Calculator: Data Structure Design and Cost Synthesis from First Principles and Learned Cost Models\",\"authors\":\"Stratos Idreos, Konstantinos Zoumpatianos, Brian Hentschel, Michael S. Kester, Demi Guo\",\"doi\":\"10.1145/3183713.3199671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data structures are critical in any data-driven scenario, but they are notoriously hard to design due to a massive design space and the dependence of performance on workload and hardware which evolve continuously. We present a design engine, the Data Calculator, which enables interactive and semi-automated design of data structures. It brings two innovations. First, it offers a set of fine-grained design primitives that capture the first principles of data layout design: how data structure nodes lay data out, and how they are positioned relative to each other. This allows for a structured description of the universe of possible data structure designs that can be synthesized as combinations of those primitives. The second innovation is computation of performance using learned cost models. These models are trained on diverse hardware and data profiles and capture the cost properties of fundamental data access primitives (e.g., random access). With these models, we synthesize the performance cost of complex operations on arbitrary data structure designs without having to: 1) implement the data structure, 2) run the workload, or even 3) access the target hardware. We demonstrate that the Data Calculator can assist data structure designers and researchers by accurately answering rich what-if design questions on the order of a few seconds or minutes, i.e., computing how the performance (response time) of a given data structure design is impacted by variations in the: 1) design, 2) hardware, 3) data, and 4) query workloads. This makes it effortless to test numerous designs and ideas before embarking on lengthy implementation, deployment, and hardware acquisition steps. We also demonstrate that the Data Calculator can synthesize entirely new designs, auto-complete partial designs, and detect suboptimal design choices.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3199671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3199671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

数据结构在任何数据驱动的场景中都是至关重要的,但由于巨大的设计空间以及性能对工作负载和硬件的依赖,它们很难设计。我们提出了一个设计引擎,数据计算器,它可以实现交互式和半自动化的数据结构设计。它带来了两个创新。首先,它提供了一组细粒度的设计原语,这些原语捕获了数据布局设计的首要原则:数据结构节点如何布局数据,以及它们如何相互定位。这允许对可能的数据结构设计进行结构化描述,这些设计可以作为这些原语的组合进行合成。第二个创新是使用学习成本模型计算性能。这些模型在不同的硬件和数据配置文件上进行训练,并捕获基本数据访问原语(例如,随机访问)的成本属性。有了这些模型,我们可以综合任意数据结构设计上复杂操作的性能成本,而不必:1)实现数据结构,2)运行工作负载,甚至3)访问目标硬件。我们演示了数据计算器可以帮助数据结构设计师和研究人员准确地回答几秒钟或几分钟的丰富的假设设计问题,即计算给定数据结构设计的性能(响应时间)如何受到以下变化的影响:1)设计、2)硬件、3)数据和4)查询工作负载。这使得在开始漫长的实现、部署和硬件获取步骤之前,可以毫不费力地测试大量的设计和想法。我们还证明了数据计算器可以合成全新的设计,自动完成部分设计,并检测次优设计选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Data Calculator: Data Structure Design and Cost Synthesis from First Principles and Learned Cost Models
Data structures are critical in any data-driven scenario, but they are notoriously hard to design due to a massive design space and the dependence of performance on workload and hardware which evolve continuously. We present a design engine, the Data Calculator, which enables interactive and semi-automated design of data structures. It brings two innovations. First, it offers a set of fine-grained design primitives that capture the first principles of data layout design: how data structure nodes lay data out, and how they are positioned relative to each other. This allows for a structured description of the universe of possible data structure designs that can be synthesized as combinations of those primitives. The second innovation is computation of performance using learned cost models. These models are trained on diverse hardware and data profiles and capture the cost properties of fundamental data access primitives (e.g., random access). With these models, we synthesize the performance cost of complex operations on arbitrary data structure designs without having to: 1) implement the data structure, 2) run the workload, or even 3) access the target hardware. We demonstrate that the Data Calculator can assist data structure designers and researchers by accurately answering rich what-if design questions on the order of a few seconds or minutes, i.e., computing how the performance (response time) of a given data structure design is impacted by variations in the: 1) design, 2) hardware, 3) data, and 4) query workloads. This makes it effortless to test numerous designs and ideas before embarking on lengthy implementation, deployment, and hardware acquisition steps. We also demonstrate that the Data Calculator can synthesize entirely new designs, auto-complete partial designs, and detect suboptimal design choices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1