Hassanen Abdulhussaen Jassim, A. AL-RUBAIEE, I. Al-Alawy
{"title":"通过模拟几种宇宙辐射的横向结构对大气中广泛气淋效应的理论研究","authors":"Hassanen Abdulhussaen Jassim, A. AL-RUBAIEE, I. Al-Alawy","doi":"10.5958/0976-5506.2018.02034.X","DOIUrl":null,"url":null,"abstract":"Extensive air showers (EAS) are a cascade of electromagnetic radiation and ionized particles that produced in the atmosphere through the interaction of a primary cosmic ray with the atom of nucleus in the air producing a huge amount of secondary particles such as X-ray, electrons, neutrons, muons, alpha particles, etc. In this work, EAS effects were demonstrated by estimating the lateral distribution function (LDF) at ultrahigh energies of the various cosmic ray particles. The LDF of charged particles such as electron and positron pair production, gamma and muons particles was simulated at ultrahigh energies 10^16, 10^18 and 10^19 eV. The simulation was carried out using an air shower simulator called AIRES system version 2.6.0. The effect of the primary particles, energies and zenith angle on the LDF of charged particles produced in the EAS was taken into account. Comparison of LDF for charged particles and experimental results gave good agreement for electron and positron pair production and muons particles at 10^19 eV for 0 and 10 zenith angles","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Theoretical Study of Extensive Air Shower Effects in Atmosphere by Simulating the Lateral structure of Several Cosmic Radiations\",\"authors\":\"Hassanen Abdulhussaen Jassim, A. AL-RUBAIEE, I. Al-Alawy\",\"doi\":\"10.5958/0976-5506.2018.02034.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensive air showers (EAS) are a cascade of electromagnetic radiation and ionized particles that produced in the atmosphere through the interaction of a primary cosmic ray with the atom of nucleus in the air producing a huge amount of secondary particles such as X-ray, electrons, neutrons, muons, alpha particles, etc. In this work, EAS effects were demonstrated by estimating the lateral distribution function (LDF) at ultrahigh energies of the various cosmic ray particles. The LDF of charged particles such as electron and positron pair production, gamma and muons particles was simulated at ultrahigh energies 10^16, 10^18 and 10^19 eV. The simulation was carried out using an air shower simulator called AIRES system version 2.6.0. The effect of the primary particles, energies and zenith angle on the LDF of charged particles produced in the EAS was taken into account. Comparison of LDF for charged particles and experimental results gave good agreement for electron and positron pair production and muons particles at 10^19 eV for 0 and 10 zenith angles\",\"PeriodicalId\":8437,\"journal\":{\"name\":\"arXiv: High Energy Astrophysical Phenomena\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5958/0976-5506.2018.02034.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5958/0976-5506.2018.02034.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Theoretical Study of Extensive Air Shower Effects in Atmosphere by Simulating the Lateral structure of Several Cosmic Radiations
Extensive air showers (EAS) are a cascade of electromagnetic radiation and ionized particles that produced in the atmosphere through the interaction of a primary cosmic ray with the atom of nucleus in the air producing a huge amount of secondary particles such as X-ray, electrons, neutrons, muons, alpha particles, etc. In this work, EAS effects were demonstrated by estimating the lateral distribution function (LDF) at ultrahigh energies of the various cosmic ray particles. The LDF of charged particles such as electron and positron pair production, gamma and muons particles was simulated at ultrahigh energies 10^16, 10^18 and 10^19 eV. The simulation was carried out using an air shower simulator called AIRES system version 2.6.0. The effect of the primary particles, energies and zenith angle on the LDF of charged particles produced in the EAS was taken into account. Comparison of LDF for charged particles and experimental results gave good agreement for electron and positron pair production and muons particles at 10^19 eV for 0 and 10 zenith angles