24ghz无损微波检测近场聚焦理论与实验验证

Christian Ziehm , Sebastian Hantscher , Johann Hinken , Christian Ziep , Maik Richter
{"title":"24ghz无损微波检测近场聚焦理论与实验验证","authors":"Christian Ziehm ,&nbsp;Sebastian Hantscher ,&nbsp;Johann Hinken ,&nbsp;Christian Ziep ,&nbsp;Maik Richter","doi":"10.1016/j.csndt.2016.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the development of different novel antenna concepts for improving the spatial resolution of microwave based non-destructive testing (NDT) at 24 GHz. In a great number of applications the antenna of the sensor can be brought very close to the device under test. In these cases, the near field characteristics of the antennas are crucial for a high resolution. However, common sensor heads offer either a high image resolution or a high penetration depth. In order to combine both of the characteristics different antenna concepts have been developed. The objectives were to obtain a high return loss combined with a sufficient high dynamic range and a near field focusing of electromagnetic waves in order to yield a high resolution. Altogether, three antennas have been set up. Each antenna has been calculated analytically, followed by a FEM simulation, near field measurements and an experimental verification.</p></div>","PeriodicalId":100221,"journal":{"name":"Case Studies in Nondestructive Testing and Evaluation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csndt.2016.10.002","citationCount":"4","resultStr":"{\"title\":\"Near field focusing for nondestructive microwave testing at 24 GHz – Theory and experimental verification\",\"authors\":\"Christian Ziehm ,&nbsp;Sebastian Hantscher ,&nbsp;Johann Hinken ,&nbsp;Christian Ziep ,&nbsp;Maik Richter\",\"doi\":\"10.1016/j.csndt.2016.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper describes the development of different novel antenna concepts for improving the spatial resolution of microwave based non-destructive testing (NDT) at 24 GHz. In a great number of applications the antenna of the sensor can be brought very close to the device under test. In these cases, the near field characteristics of the antennas are crucial for a high resolution. However, common sensor heads offer either a high image resolution or a high penetration depth. In order to combine both of the characteristics different antenna concepts have been developed. The objectives were to obtain a high return loss combined with a sufficient high dynamic range and a near field focusing of electromagnetic waves in order to yield a high resolution. Altogether, three antennas have been set up. Each antenna has been calculated analytically, followed by a FEM simulation, near field measurements and an experimental verification.</p></div>\",\"PeriodicalId\":100221,\"journal\":{\"name\":\"Case Studies in Nondestructive Testing and Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csndt.2016.10.002\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Nondestructive Testing and Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214657116300375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Nondestructive Testing and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214657116300375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了为提高24 GHz微波无损检测(NDT)的空间分辨率而发展的各种新型天线概念。在许多应用中,传感器的天线可以非常靠近被测设备。在这些情况下,天线的近场特性对于高分辨率至关重要。然而,普通的传感器头提供高图像分辨率或高穿透深度。为了结合这两种特性,不同的天线概念被开发出来。目标是获得高回波损耗,同时具有足够的高动态范围和电磁波的近场聚焦,从而获得高分辨率。总共设置了三个天线。对每个天线进行了解析计算,然后进行了有限元模拟、近场测量和实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near field focusing for nondestructive microwave testing at 24 GHz – Theory and experimental verification

This paper describes the development of different novel antenna concepts for improving the spatial resolution of microwave based non-destructive testing (NDT) at 24 GHz. In a great number of applications the antenna of the sensor can be brought very close to the device under test. In these cases, the near field characteristics of the antennas are crucial for a high resolution. However, common sensor heads offer either a high image resolution or a high penetration depth. In order to combine both of the characteristics different antenna concepts have been developed. The objectives were to obtain a high return loss combined with a sufficient high dynamic range and a near field focusing of electromagnetic waves in order to yield a high resolution. Altogether, three antennas have been set up. Each antenna has been calculated analytically, followed by a FEM simulation, near field measurements and an experimental verification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents Editorial Board Editorial Board Contents Comparison of surface-based and image-based quality metrics for the analysis of dimensional computed tomography data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1