S. Tsai, Wei Wu, Hiroyoshi Sota, T. Hirogaki, E. Aoyama
{"title":"快闪纺丝纳米纤维无纺布空气过滤性能研究","authors":"S. Tsai, Wei Wu, Hiroyoshi Sota, T. Hirogaki, E. Aoyama","doi":"10.20965/ijat.2022.p0654","DOIUrl":null,"url":null,"abstract":"Using computational fluid dynamics (CFD) technology, a stable manufacturing method for polymeric nanofiber non-woven fabrics based on an improved melt-blowing method and flash spinning is realized to achieve mass productivity. Subsequently, a method to predict filter efficiency using two production methods based on the effects of thickness, filling rate, and fiber diameter on filtration performance is developed to establish a filter design via CFD technology. CFD models featuring uniform fiber diameters are proposed. Next, the pressure loss and flow resistivity are calculated using CFD flow analysis software, as in a filter experiment. The proposed fiber diameter distribution model yields results similar to the experimental value, and the relationship among filling rate, fiber diameter, and flow resistivity is verified. The non-woven filter fabricated in this study demonstrates superior filtration properties, based on the results. Additionally, a method to satisfy both low pressure loss (low flow resistivity) and high filtration efficiency is discussed. Although the pressure loss increases, the filter yields a value below the standard for high-performance face masks, since the fiber diameter is on the nano-order.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"41 1","pages":"654-665"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Air Filter Properties of Flash-Spinning Nanofiber Non-Woven Fabric\",\"authors\":\"S. Tsai, Wei Wu, Hiroyoshi Sota, T. Hirogaki, E. Aoyama\",\"doi\":\"10.20965/ijat.2022.p0654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using computational fluid dynamics (CFD) technology, a stable manufacturing method for polymeric nanofiber non-woven fabrics based on an improved melt-blowing method and flash spinning is realized to achieve mass productivity. Subsequently, a method to predict filter efficiency using two production methods based on the effects of thickness, filling rate, and fiber diameter on filtration performance is developed to establish a filter design via CFD technology. CFD models featuring uniform fiber diameters are proposed. Next, the pressure loss and flow resistivity are calculated using CFD flow analysis software, as in a filter experiment. The proposed fiber diameter distribution model yields results similar to the experimental value, and the relationship among filling rate, fiber diameter, and flow resistivity is verified. The non-woven filter fabricated in this study demonstrates superior filtration properties, based on the results. Additionally, a method to satisfy both low pressure loss (low flow resistivity) and high filtration efficiency is discussed. Although the pressure loss increases, the filter yields a value below the standard for high-performance face masks, since the fiber diameter is on the nano-order.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"41 1\",\"pages\":\"654-665\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2022.p0654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2022.p0654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Air Filter Properties of Flash-Spinning Nanofiber Non-Woven Fabric
Using computational fluid dynamics (CFD) technology, a stable manufacturing method for polymeric nanofiber non-woven fabrics based on an improved melt-blowing method and flash spinning is realized to achieve mass productivity. Subsequently, a method to predict filter efficiency using two production methods based on the effects of thickness, filling rate, and fiber diameter on filtration performance is developed to establish a filter design via CFD technology. CFD models featuring uniform fiber diameters are proposed. Next, the pressure loss and flow resistivity are calculated using CFD flow analysis software, as in a filter experiment. The proposed fiber diameter distribution model yields results similar to the experimental value, and the relationship among filling rate, fiber diameter, and flow resistivity is verified. The non-woven filter fabricated in this study demonstrates superior filtration properties, based on the results. Additionally, a method to satisfy both low pressure loss (low flow resistivity) and high filtration efficiency is discussed. Although the pressure loss increases, the filter yields a value below the standard for high-performance face masks, since the fiber diameter is on the nano-order.