Chris Dall, Shih-wei Li, J. Lim, Jason Nieh, G. Koloventzos
{"title":"ARM虚拟化:性能和架构含义","authors":"Chris Dall, Shih-wei Li, J. Lim, Jason Nieh, G. Koloventzos","doi":"10.1145/3007787.3001169","DOIUrl":null,"url":null,"abstract":"ARM servers are becoming increasingly common, making server technologies such as virtualization for ARM of growing importance. We present the first study of ARM virtualization performance on server hardware, including multi-core measurements of two popular ARM and x86 hypervisors, KVM and Xen. We show how ARM hardware support for virtualization can enable much faster transitions between VMs and the hypervisor, a key hypervisor operation. However, current hypervisor designs, including both Type 1 hypervisors such as Xen and Type 2 hypervisors such as KVM, are not able to leverage this performance benefit for real application workloads. We discuss the reasons why and show that other factors related to hypervisor software design and implementation have a larger role in overall performance. Based on our measurements, we discuss changes to ARM's hardware virtualization support that can potentially bridge the gap to bring its faster VM-to-hypervisor transition mechanism to modern Type 2 hypervisors running real applications. These changes have been incorporated into the latest ARM architecture.","PeriodicalId":6634,"journal":{"name":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","volume":"1 1","pages":"304-316"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"ARM Virtualization: Performance and Architectural Implications\",\"authors\":\"Chris Dall, Shih-wei Li, J. Lim, Jason Nieh, G. Koloventzos\",\"doi\":\"10.1145/3007787.3001169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ARM servers are becoming increasingly common, making server technologies such as virtualization for ARM of growing importance. We present the first study of ARM virtualization performance on server hardware, including multi-core measurements of two popular ARM and x86 hypervisors, KVM and Xen. We show how ARM hardware support for virtualization can enable much faster transitions between VMs and the hypervisor, a key hypervisor operation. However, current hypervisor designs, including both Type 1 hypervisors such as Xen and Type 2 hypervisors such as KVM, are not able to leverage this performance benefit for real application workloads. We discuss the reasons why and show that other factors related to hypervisor software design and implementation have a larger role in overall performance. Based on our measurements, we discuss changes to ARM's hardware virtualization support that can potentially bridge the gap to bring its faster VM-to-hypervisor transition mechanism to modern Type 2 hypervisors running real applications. These changes have been incorporated into the latest ARM architecture.\",\"PeriodicalId\":6634,\"journal\":{\"name\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"1 1\",\"pages\":\"304-316\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3007787.3001169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007787.3001169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ARM Virtualization: Performance and Architectural Implications
ARM servers are becoming increasingly common, making server technologies such as virtualization for ARM of growing importance. We present the first study of ARM virtualization performance on server hardware, including multi-core measurements of two popular ARM and x86 hypervisors, KVM and Xen. We show how ARM hardware support for virtualization can enable much faster transitions between VMs and the hypervisor, a key hypervisor operation. However, current hypervisor designs, including both Type 1 hypervisors such as Xen and Type 2 hypervisors such as KVM, are not able to leverage this performance benefit for real application workloads. We discuss the reasons why and show that other factors related to hypervisor software design and implementation have a larger role in overall performance. Based on our measurements, we discuss changes to ARM's hardware virtualization support that can potentially bridge the gap to bring its faster VM-to-hypervisor transition mechanism to modern Type 2 hypervisors running real applications. These changes have been incorporated into the latest ARM architecture.