基于MapReduce聚类框架的并行分数狮子聚类算法

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2022-01-01 DOI:10.4018/ijswis.297034
S. Chander, P. Vijaya, P. Dhyani
{"title":"基于MapReduce聚类框架的并行分数狮子聚类算法","authors":"S. Chander, P. Vijaya, P. Dhyani","doi":"10.4018/ijswis.297034","DOIUrl":null,"url":null,"abstract":"This work introduces a parallel clustering algorithm by modifying the existing Fractional Lion Algorithm (FLA). The proposed work replaces the conventional Euclidean distance measure with the Bhattacharya distance measure to newly propose the improved FLA (IMR-FLA). The proposed IMR-FLA is implemented in both the mapper and the reducer in the MapReduce framework to achieve the parallel clustering. The experimentation of the proposed IMR-FLA is done by using six standard databases, namely Pima Indian diabetes dataset, Heart disease dataset, Hepatitis dataset, localization dataset, breast cancer dataset, and skin segmentation dataset, from the UCI repository. The proposed IMR-FLA has the overall improved Jaccard coefficient value of 0.9357, 0.6572, 0.7462, 0.5944, 0.9418, and 0.8680, for each dataset. Similarly, the proposed IMR-FLA algorithm has outclassed other classifiers' performance with the clustering accuracy value of 0.9674, 0.9471, 0.9677, 0.777, 0.9023, and 0.9585, respectively, for the experimental databases.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"8 1","pages":"1-25"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Parallel Fractional Lion Algorithm for Data Clustering Based on MapReduce Cluster Framework\",\"authors\":\"S. Chander, P. Vijaya, P. Dhyani\",\"doi\":\"10.4018/ijswis.297034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a parallel clustering algorithm by modifying the existing Fractional Lion Algorithm (FLA). The proposed work replaces the conventional Euclidean distance measure with the Bhattacharya distance measure to newly propose the improved FLA (IMR-FLA). The proposed IMR-FLA is implemented in both the mapper and the reducer in the MapReduce framework to achieve the parallel clustering. The experimentation of the proposed IMR-FLA is done by using six standard databases, namely Pima Indian diabetes dataset, Heart disease dataset, Hepatitis dataset, localization dataset, breast cancer dataset, and skin segmentation dataset, from the UCI repository. The proposed IMR-FLA has the overall improved Jaccard coefficient value of 0.9357, 0.6572, 0.7462, 0.5944, 0.9418, and 0.8680, for each dataset. Similarly, the proposed IMR-FLA algorithm has outclassed other classifiers' performance with the clustering accuracy value of 0.9674, 0.9471, 0.9677, 0.777, 0.9023, and 0.9585, respectively, for the experimental databases.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"8 1\",\"pages\":\"1-25\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.297034\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.297034","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

摘要

本文通过改进现有的分数狮子算法(FLA),提出了一种并行聚类算法。本文用Bhattacharya距离测度取代传统的欧几里得距离测度,提出了一种新的改进的FLA (IMR-FLA)。提出的IMR-FLA在MapReduce框架的mapper和reducer中同时实现,以实现并行聚类。采用UCI知识库中的皮马印第安人糖尿病数据集、心脏病数据集、肝炎数据集、定位数据集、乳腺癌数据集和皮肤分割数据集6个标准数据库对所提出的IMR-FLA进行了实验。对于每个数据集,所提出的IMR-FLA的总体Jaccard系数值分别为0.9357、0.6572、0.7462、0.5944、0.9418和0.8680。同样,本文提出的IMR-FLA算法在实验数据库的聚类精度值分别为0.9674、0.9471、0.9677、0.777、0.9023和0.9585,优于其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Parallel Fractional Lion Algorithm for Data Clustering Based on MapReduce Cluster Framework
This work introduces a parallel clustering algorithm by modifying the existing Fractional Lion Algorithm (FLA). The proposed work replaces the conventional Euclidean distance measure with the Bhattacharya distance measure to newly propose the improved FLA (IMR-FLA). The proposed IMR-FLA is implemented in both the mapper and the reducer in the MapReduce framework to achieve the parallel clustering. The experimentation of the proposed IMR-FLA is done by using six standard databases, namely Pima Indian diabetes dataset, Heart disease dataset, Hepatitis dataset, localization dataset, breast cancer dataset, and skin segmentation dataset, from the UCI repository. The proposed IMR-FLA has the overall improved Jaccard coefficient value of 0.9357, 0.6572, 0.7462, 0.5944, 0.9418, and 0.8680, for each dataset. Similarly, the proposed IMR-FLA algorithm has outclassed other classifiers' performance with the clustering accuracy value of 0.9674, 0.9471, 0.9677, 0.777, 0.9023, and 0.9585, respectively, for the experimental databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1