Misha Sra, Prashanth Vijayaraghavan, Ognjen Rudovic, P. Maes, D. Roy
{"title":"DeepSpace:基于情绪的音乐虚拟现实图像纹理生成","authors":"Misha Sra, Prashanth Vijayaraghavan, Ognjen Rudovic, P. Maes, D. Roy","doi":"10.1109/CVPRW.2017.283","DOIUrl":null,"url":null,"abstract":"Affective virtual spaces are of interest for many VR applications in areas of wellbeing, art, education, and entertainment. Creating content for virtual environments is a laborious task involving multiple skills like 3D modeling, texturing, animation, lighting, and programming. One way to facilitate content creation is to automate sub-processes like assignment of textures and materials within virtual environments. To this end, we introduce the DeepSpace approach that automatically creates and applies image textures to objects in procedurally created 3D scenes. The main novelty of our DeepSpace approach is that it uses music to automatically create kaleidoscopic textures for virtual environments designed to elicit emotional responses in users. Specifically, DeepSpace exploits the modeling power of deep neural networks, which have shown great performance in image generation tasks, to achieve mood-based image generation. Our study results indicate the virtual environments created by DeepSpace elicit positive emotions and achieve high presence scores.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"33 1","pages":"2289-2298"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"DeepSpace: Mood-Based Image Texture Generation for Virtual Reality from Music\",\"authors\":\"Misha Sra, Prashanth Vijayaraghavan, Ognjen Rudovic, P. Maes, D. Roy\",\"doi\":\"10.1109/CVPRW.2017.283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affective virtual spaces are of interest for many VR applications in areas of wellbeing, art, education, and entertainment. Creating content for virtual environments is a laborious task involving multiple skills like 3D modeling, texturing, animation, lighting, and programming. One way to facilitate content creation is to automate sub-processes like assignment of textures and materials within virtual environments. To this end, we introduce the DeepSpace approach that automatically creates and applies image textures to objects in procedurally created 3D scenes. The main novelty of our DeepSpace approach is that it uses music to automatically create kaleidoscopic textures for virtual environments designed to elicit emotional responses in users. Specifically, DeepSpace exploits the modeling power of deep neural networks, which have shown great performance in image generation tasks, to achieve mood-based image generation. Our study results indicate the virtual environments created by DeepSpace elicit positive emotions and achieve high presence scores.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"33 1\",\"pages\":\"2289-2298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeepSpace: Mood-Based Image Texture Generation for Virtual Reality from Music
Affective virtual spaces are of interest for many VR applications in areas of wellbeing, art, education, and entertainment. Creating content for virtual environments is a laborious task involving multiple skills like 3D modeling, texturing, animation, lighting, and programming. One way to facilitate content creation is to automate sub-processes like assignment of textures and materials within virtual environments. To this end, we introduce the DeepSpace approach that automatically creates and applies image textures to objects in procedurally created 3D scenes. The main novelty of our DeepSpace approach is that it uses music to automatically create kaleidoscopic textures for virtual environments designed to elicit emotional responses in users. Specifically, DeepSpace exploits the modeling power of deep neural networks, which have shown great performance in image generation tasks, to achieve mood-based image generation. Our study results indicate the virtual environments created by DeepSpace elicit positive emotions and achieve high presence scores.