基于多尺度CNN的排他分离的新生血管检测

Geetha Pavani Pappu, B. Biswal, M. Sairam, P. Biswal
{"title":"基于多尺度CNN的排他分离的新生血管检测","authors":"Geetha Pavani Pappu, B. Biswal, M. Sairam, P. Biswal","doi":"10.1049/ipr2.12122","DOIUrl":null,"url":null,"abstract":"In this article, an exclusive-disjunction-based detection of neovascularisation (NV), which is the formation of new blood vessels on the retinal surfaces, is presented. These vessels, being thin and fragile, get ruptured easily leading to permanent blindness. The proposed algorithm consists of two stages. In the first stage, the retinal images are classified into non-NV and NV using multi-scale convolutional neural network, while in the second stage, 13 relevant features are extracted from the vascular map of NV images to achieve the pixel locations of new blood vessels using a directional matched filter along with the Difference of Laplacian of Gaussian operator followed by an exclusive disjunction function with adaptive thresholding of the vascular map. At the same time, the pixel locations of optic disc (OD) are detected using intensity distribution and variations on the retinal images. Finally, the pixel locations of both new blood vessels and OD are compared for classification. If the pixel locations of new blood vessels fall inside the OD, they are labelled as NV on OD, else they are labelled as NV elsewhere. The proposed algorithm has achieved an accuracy of 99.5%, specificity of 97.5%, sensitivity of 98.9%, and area under the curve of 94.2% when tested on 155 non-NV and 115 NV images.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"11 1","pages":"1518-1529"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An exclusive-disjunction-based detection of neovascularisation using multi-scale CNN\",\"authors\":\"Geetha Pavani Pappu, B. Biswal, M. Sairam, P. Biswal\",\"doi\":\"10.1049/ipr2.12122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an exclusive-disjunction-based detection of neovascularisation (NV), which is the formation of new blood vessels on the retinal surfaces, is presented. These vessels, being thin and fragile, get ruptured easily leading to permanent blindness. The proposed algorithm consists of two stages. In the first stage, the retinal images are classified into non-NV and NV using multi-scale convolutional neural network, while in the second stage, 13 relevant features are extracted from the vascular map of NV images to achieve the pixel locations of new blood vessels using a directional matched filter along with the Difference of Laplacian of Gaussian operator followed by an exclusive disjunction function with adaptive thresholding of the vascular map. At the same time, the pixel locations of optic disc (OD) are detected using intensity distribution and variations on the retinal images. Finally, the pixel locations of both new blood vessels and OD are compared for classification. If the pixel locations of new blood vessels fall inside the OD, they are labelled as NV on OD, else they are labelled as NV elsewhere. The proposed algorithm has achieved an accuracy of 99.5%, specificity of 97.5%, sensitivity of 98.9%, and area under the curve of 94.2% when tested on 155 non-NV and 115 NV images.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"11 1\",\"pages\":\"1518-1529\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ipr2.12122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ipr2.12122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这篇文章中,一个基于排他分离的检测新血管(NV),这是在视网膜表面形成的新血管,提出。这些血管又薄又脆弱,很容易破裂,导致永久性失明。该算法分为两个阶段。第一阶段,利用多尺度卷积神经网络将视网膜图像分为非NV和NV两类,第二阶段,从NV图像的血管图中提取13个相关特征,利用方向匹配滤波器,结合高斯算子拉普拉斯差分,再结合血管图的自适应阈值分离函数,得到新生血管的像素位置。同时,利用视网膜图像的强度分布和变化来检测视盘的像素位置。最后比较新血管和OD的像素位置进行分类。如果新血管的像素位置落在外径内,则在外径上标记为NV,否则在其他地方标记为NV。在155张非NV图像和115张NV图像上进行测试,该算法的准确率为99.5%,特异度为97.5%,灵敏度为98.9%,曲线下面积为94.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An exclusive-disjunction-based detection of neovascularisation using multi-scale CNN
In this article, an exclusive-disjunction-based detection of neovascularisation (NV), which is the formation of new blood vessels on the retinal surfaces, is presented. These vessels, being thin and fragile, get ruptured easily leading to permanent blindness. The proposed algorithm consists of two stages. In the first stage, the retinal images are classified into non-NV and NV using multi-scale convolutional neural network, while in the second stage, 13 relevant features are extracted from the vascular map of NV images to achieve the pixel locations of new blood vessels using a directional matched filter along with the Difference of Laplacian of Gaussian operator followed by an exclusive disjunction function with adaptive thresholding of the vascular map. At the same time, the pixel locations of optic disc (OD) are detected using intensity distribution and variations on the retinal images. Finally, the pixel locations of both new blood vessels and OD are compared for classification. If the pixel locations of new blood vessels fall inside the OD, they are labelled as NV on OD, else they are labelled as NV elsewhere. The proposed algorithm has achieved an accuracy of 99.5%, specificity of 97.5%, sensitivity of 98.9%, and area under the curve of 94.2% when tested on 155 non-NV and 115 NV images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mask-Guided Image Person Removal with Data Synthesis EDAfuse: A encoder-decoder with atrous spatial pyramid network for infrared and visible image fusion Visible part prediction and temporal calibration for pedestrian detection STDC-MA Network for Semantic Segmentation Multi-similarity based Hyperrelation Network for few-shot segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1