从Reddit上发布的关于COVID-19的帖子中提取信息的新方法

Gianluca Bonifazi, Enrico Corradini, D. Ursino, L. Virgili
{"title":"从Reddit上发布的关于COVID-19的帖子中提取信息的新方法","authors":"Gianluca Bonifazi, Enrico Corradini, D. Ursino, L. Virgili","doi":"10.1142/s0219622022500213","DOIUrl":null,"url":null,"abstract":"In the last two years, we have seen a huge number of debates and discussions on COVID-19 in social media. Many authors have analyzed these debates on Facebook and Twitter, while very few ones have considered Reddit. In this paper, we focus on this social network and propose three approaches to extract information from posts on COVID-19 published in it. The first performs a semi-automatic and dynamic classification of Reddit posts. The second automatically constructs virtual subreddits, each characterized by homogeneous themes. The third automatically identifies virtual communities of users with homogeneous themes. The three approaches represent an advance over the past literature. In fact, the latter lacks studies regarding classification algorithms capable of outlining the differences among the thousands of posts on COVID-19 in Reddit. Analogously, it lacks approaches able to build virtual subreddits with homogeneous topics or virtual communities of users with common interests.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"43 1","pages":"1385-1431"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"New Approaches to Extract Information From Posts on COVID-19 Published on Reddit\",\"authors\":\"Gianluca Bonifazi, Enrico Corradini, D. Ursino, L. Virgili\",\"doi\":\"10.1142/s0219622022500213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last two years, we have seen a huge number of debates and discussions on COVID-19 in social media. Many authors have analyzed these debates on Facebook and Twitter, while very few ones have considered Reddit. In this paper, we focus on this social network and propose three approaches to extract information from posts on COVID-19 published in it. The first performs a semi-automatic and dynamic classification of Reddit posts. The second automatically constructs virtual subreddits, each characterized by homogeneous themes. The third automatically identifies virtual communities of users with homogeneous themes. The three approaches represent an advance over the past literature. In fact, the latter lacks studies regarding classification algorithms capable of outlining the differences among the thousands of posts on COVID-19 in Reddit. Analogously, it lacks approaches able to build virtual subreddits with homogeneous topics or virtual communities of users with common interests.\",\"PeriodicalId\":13527,\"journal\":{\"name\":\"Int. J. Inf. Technol. Decis. Mak.\",\"volume\":\"43 1\",\"pages\":\"1385-1431\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Decis. Mak.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219622022500213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622022500213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在过去的两年里,我们在社交媒体上看到了关于COVID-19的大量辩论和讨论。许多作者分析了Facebook和Twitter上的这些争论,而很少有人考虑过Reddit。本文以该社交网络为研究对象,提出了三种方法从该社交网络上发布的有关COVID-19的帖子中提取信息。第一个对Reddit帖子执行半自动和动态分类。第二种是自动构建虚拟子reddit,每个子reddit都有相同的主题。第三个自动识别具有相同主题的用户虚拟社区。这三种方法代表了过去文献的进步。事实上,后者缺乏关于分类算法的研究,这些算法能够概括Reddit上数千篇关于COVID-19的帖子之间的差异。类似地,它缺乏能够建立具有相同主题的虚拟子reddit或具有共同兴趣的用户虚拟社区的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Approaches to Extract Information From Posts on COVID-19 Published on Reddit
In the last two years, we have seen a huge number of debates and discussions on COVID-19 in social media. Many authors have analyzed these debates on Facebook and Twitter, while very few ones have considered Reddit. In this paper, we focus on this social network and propose three approaches to extract information from posts on COVID-19 published in it. The first performs a semi-automatic and dynamic classification of Reddit posts. The second automatically constructs virtual subreddits, each characterized by homogeneous themes. The third automatically identifies virtual communities of users with homogeneous themes. The three approaches represent an advance over the past literature. In fact, the latter lacks studies regarding classification algorithms capable of outlining the differences among the thousands of posts on COVID-19 in Reddit. Analogously, it lacks approaches able to build virtual subreddits with homogeneous topics or virtual communities of users with common interests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editors' Introduction for the Special Issue on The Role of Decision Making to Overcome COVID-19 The Behavioral TOPSIS Based on Prospect Theory and Regret Theory Instigating the Sailfish Optimization Algorithm Based on Opposition-Based Learning to Determine the Salient Features From a High-Dimensional Dataset Optimized Deep Learning-Enabled Hybrid Logistic Piece-Wise Chaotic Map for Secured Medical Data Storage System A Typology Scheme for the Criteria Weighting Methods in MADM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1