通过迁移学习使用集成学习的胸部x线和CT扫描分类

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-06-09 DOI:10.4108/eetsis.vi.382
S. Siddiqui, Neda Fatima, Anwar Ahmad
{"title":"通过迁移学习使用集成学习的胸部x线和CT扫描分类","authors":"S. Siddiqui, Neda Fatima, Anwar Ahmad","doi":"10.4108/eetsis.vi.382","DOIUrl":null,"url":null,"abstract":"COVID-19 has posed an extraordinary challenge to the entire world. As the number of COVID-19 cases continues to climb around the world, medical experts are facing an unprecedented challenge in correctly diagnosing and predicting the disease. The present research attempts to develop a new and effective strategy for classifying chest X-rays and CT Scans in order to distinguish COVID-19 from other diseases. Transfer learning was used to train various models for chest X-rays and CT Scan, including Inceptionv3, Xception, InceptionResNetv2, DenseNet121, and Resnet50. The models are then integrated using an ensemble technique to improve forecast accuracy. The proposed ensemble approach is more effective in classifying X-ray and CT Scan and forecasting COVID-19.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Chest X-ray and CT Scan Classification using Ensemble Learning through Transfer Learning\",\"authors\":\"S. Siddiqui, Neda Fatima, Anwar Ahmad\",\"doi\":\"10.4108/eetsis.vi.382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 has posed an extraordinary challenge to the entire world. As the number of COVID-19 cases continues to climb around the world, medical experts are facing an unprecedented challenge in correctly diagnosing and predicting the disease. The present research attempts to develop a new and effective strategy for classifying chest X-rays and CT Scans in order to distinguish COVID-19 from other diseases. Transfer learning was used to train various models for chest X-rays and CT Scan, including Inceptionv3, Xception, InceptionResNetv2, DenseNet121, and Resnet50. The models are then integrated using an ensemble technique to improve forecast accuracy. The proposed ensemble approach is more effective in classifying X-ray and CT Scan and forecasting COVID-19.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetsis.vi.382\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.vi.382","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

2019冠状病毒病给全世界带来了非同寻常的挑战。随着全球新冠肺炎病例数持续攀升,医学专家在正确诊断和预测疾病方面面临着前所未有的挑战。本研究试图开发一种新的有效的胸部x线和CT扫描分类策略,以便将COVID-19与其他疾病区分开来。迁移学习用于训练各种胸部x射线和CT扫描模型,包括Inceptionv3、Xception、InceptionResNetv2、DenseNet121和Resnet50。然后使用集合技术将这些模型集成起来以提高预报精度。本文提出的集成方法在x射线和CT扫描分类和COVID-19预测中更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chest X-ray and CT Scan Classification using Ensemble Learning through Transfer Learning
COVID-19 has posed an extraordinary challenge to the entire world. As the number of COVID-19 cases continues to climb around the world, medical experts are facing an unprecedented challenge in correctly diagnosing and predicting the disease. The present research attempts to develop a new and effective strategy for classifying chest X-rays and CT Scans in order to distinguish COVID-19 from other diseases. Transfer learning was used to train various models for chest X-rays and CT Scan, including Inceptionv3, Xception, InceptionResNetv2, DenseNet121, and Resnet50. The models are then integrated using an ensemble technique to improve forecast accuracy. The proposed ensemble approach is more effective in classifying X-ray and CT Scan and forecasting COVID-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1