Nigel Bosch, Huili Chen, S. D’Mello, R. Baker, V. Shute
{"title":"野外多模态情感检测的准确性与可用性启发式","authors":"Nigel Bosch, Huili Chen, S. D’Mello, R. Baker, V. Shute","doi":"10.1145/2818346.2820739","DOIUrl":null,"url":null,"abstract":"This paper discusses multimodal affect detection from a fusion of facial expressions and interaction features derived from students' interactions with an educational game in the noisy real-world context of a computer-enabled classroom. Log data of students' interactions with the game and face videos from 133 students were recorded in a computer-enabled classroom over a two day period. Human observers live annotated learning-centered affective states such as engagement, confusion, and frustration. The face-only detectors were more accurate than interaction-only detectors. Multimodal affect detectors did not show any substantial improvement in accuracy over the face-only detectors. However, the face-only detectors were only applicable to 65% of the cases due to face registration errors caused by excessive movement, occlusion, poor lighting, and other factors. Multimodal fusion techniques were able to improve the applicability of detectors to 98% of cases without sacrificing classification accuracy. Balancing the accuracy vs. applicability tradeoff appears to be an important feature of multimodal affect detection.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Accuracy vs. Availability Heuristic in Multimodal Affect Detection in the Wild\",\"authors\":\"Nigel Bosch, Huili Chen, S. D’Mello, R. Baker, V. Shute\",\"doi\":\"10.1145/2818346.2820739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses multimodal affect detection from a fusion of facial expressions and interaction features derived from students' interactions with an educational game in the noisy real-world context of a computer-enabled classroom. Log data of students' interactions with the game and face videos from 133 students were recorded in a computer-enabled classroom over a two day period. Human observers live annotated learning-centered affective states such as engagement, confusion, and frustration. The face-only detectors were more accurate than interaction-only detectors. Multimodal affect detectors did not show any substantial improvement in accuracy over the face-only detectors. However, the face-only detectors were only applicable to 65% of the cases due to face registration errors caused by excessive movement, occlusion, poor lighting, and other factors. Multimodal fusion techniques were able to improve the applicability of detectors to 98% of cases without sacrificing classification accuracy. Balancing the accuracy vs. applicability tradeoff appears to be an important feature of multimodal affect detection.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2820739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accuracy vs. Availability Heuristic in Multimodal Affect Detection in the Wild
This paper discusses multimodal affect detection from a fusion of facial expressions and interaction features derived from students' interactions with an educational game in the noisy real-world context of a computer-enabled classroom. Log data of students' interactions with the game and face videos from 133 students were recorded in a computer-enabled classroom over a two day period. Human observers live annotated learning-centered affective states such as engagement, confusion, and frustration. The face-only detectors were more accurate than interaction-only detectors. Multimodal affect detectors did not show any substantial improvement in accuracy over the face-only detectors. However, the face-only detectors were only applicable to 65% of the cases due to face registration errors caused by excessive movement, occlusion, poor lighting, and other factors. Multimodal fusion techniques were able to improve the applicability of detectors to 98% of cases without sacrificing classification accuracy. Balancing the accuracy vs. applicability tradeoff appears to be an important feature of multimodal affect detection.