欧洲国家电力负荷的聚类分析

A. K. Tanwar, E. Crisostomi, P. Ferraro, Marco Raugi, M. Tucci, G. Giunta
{"title":"欧洲国家电力负荷的聚类分析","authors":"A. K. Tanwar, E. Crisostomi, P. Ferraro, Marco Raugi, M. Tucci, G. Giunta","doi":"10.1109/IJCNN.2015.7280329","DOIUrl":null,"url":null,"abstract":"In this paper we used clustering algorithms to compare the typical load profiles of different European countries in different day of the weeks. We find out that better results are obtained if the clustering is not performed directly on the data, but on some features extracted from the data. Clustering results can be exploited by energy providers to tailor more attractive time-varying tariffs for their customers. In particular, despite the relevant differences among the several compared countries, we obtained the interesting result of identifying a single feature that is able to distinguish weekdays from holidays and pre-holidays in all the examined countries.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"34 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Clustering analysis of the electrical load in european countries\",\"authors\":\"A. K. Tanwar, E. Crisostomi, P. Ferraro, Marco Raugi, M. Tucci, G. Giunta\",\"doi\":\"10.1109/IJCNN.2015.7280329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we used clustering algorithms to compare the typical load profiles of different European countries in different day of the weeks. We find out that better results are obtained if the clustering is not performed directly on the data, but on some features extracted from the data. Clustering results can be exploited by energy providers to tailor more attractive time-varying tariffs for their customers. In particular, despite the relevant differences among the several compared countries, we obtained the interesting result of identifying a single feature that is able to distinguish weekdays from holidays and pre-holidays in all the examined countries.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"34 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们使用聚类算法来比较不同欧洲国家在一周中不同日子的典型负荷概况。我们发现,如果不直接对数据进行聚类,而是对从数据中提取的一些特征进行聚类,可以获得更好的聚类结果。能源供应商可以利用聚类结果为其客户量身定制更具吸引力的时变电价。特别是,尽管几个比较国家之间存在相关差异,但我们获得了一个有趣的结果,即在所有被调查的国家中,识别出一个能够区分工作日、节假日和节假日前的单一特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering analysis of the electrical load in european countries
In this paper we used clustering algorithms to compare the typical load profiles of different European countries in different day of the weeks. We find out that better results are obtained if the clustering is not performed directly on the data, but on some features extracted from the data. Clustering results can be exploited by energy providers to tailor more attractive time-varying tariffs for their customers. In particular, despite the relevant differences among the several compared countries, we obtained the interesting result of identifying a single feature that is able to distinguish weekdays from holidays and pre-holidays in all the examined countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1