基于x向量的损伤检测与识别研究

Kyle L. Hom, H. Beigi, R. Betti
{"title":"基于x向量的损伤检测与识别研究","authors":"Kyle L. Hom, H. Beigi, R. Betti","doi":"10.1115/imece2021-73324","DOIUrl":null,"url":null,"abstract":"\n Damage identification for structural health monitoring (SHM) is explored through applying the x-vector speaker recognition technique in the structural domain. Using the progressive damage tests from the Z24 Bridge Benchmark dataset, a time-delay neural network (TDNN) is trained as an acoustic model to classify the provided global damage scenarios. The outputs of a pre-final layer, called x-vectors, are used as damage-sensitive features for identification of damage presence and mechanisms. Since the developed TDNN has learned the underpinning dynamics of the damage mechanisms in the Z24 tests, we apply it as a basis for damage identification problems tangential to the Z24 progressive damage classification task. Transfer learning and domain transfer are investigated via application of the developed TDNN towards local damage identification of the Z24 Bridge, and global and local damage identification for the unseen LANL SHM Alamosa Canyon Bridge, UC-Irvine Bridge Column, and Bookshelf studies. Supervised and unsupervised classification techniques are explored to assess this method, and strong results in damage detection are obtained for these SHM problems.","PeriodicalId":23648,"journal":{"name":"Volume 1: Acoustics, Vibration, and Phononics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Exploration of X-Vectors for Damage Detection and Identification\",\"authors\":\"Kyle L. Hom, H. Beigi, R. Betti\",\"doi\":\"10.1115/imece2021-73324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Damage identification for structural health monitoring (SHM) is explored through applying the x-vector speaker recognition technique in the structural domain. Using the progressive damage tests from the Z24 Bridge Benchmark dataset, a time-delay neural network (TDNN) is trained as an acoustic model to classify the provided global damage scenarios. The outputs of a pre-final layer, called x-vectors, are used as damage-sensitive features for identification of damage presence and mechanisms. Since the developed TDNN has learned the underpinning dynamics of the damage mechanisms in the Z24 tests, we apply it as a basis for damage identification problems tangential to the Z24 progressive damage classification task. Transfer learning and domain transfer are investigated via application of the developed TDNN towards local damage identification of the Z24 Bridge, and global and local damage identification for the unseen LANL SHM Alamosa Canyon Bridge, UC-Irvine Bridge Column, and Bookshelf studies. Supervised and unsupervised classification techniques are explored to assess this method, and strong results in damage detection are obtained for these SHM problems.\",\"PeriodicalId\":23648,\"journal\":{\"name\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-73324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-73324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将x向量说话人识别技术应用于结构领域,对结构健康监测中的损伤识别进行了探索。使用来自Z24 Bridge Benchmark数据集的渐进式损伤测试,将时滞神经网络(TDNN)训练为声学模型,对提供的全局损伤场景进行分类。预终层的输出称为x向量,用作识别损伤存在和机制的损伤敏感特征。由于开发的TDNN已经学习了Z24试验中损伤机制的基础动力学,我们将其作为与Z24渐进损伤分类任务无关的损伤识别问题的基础。通过将开发的TDNN应用于Z24桥的局部损伤识别,以及未见的LANL SHM Alamosa Canyon桥、UC-Irvine桥柱和Bookshelf的全局和局部损伤识别,研究了迁移学习和领域转移。研究了有监督分类和无监督分类两种方法,并在损伤检测方面取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Exploration of X-Vectors for Damage Detection and Identification
Damage identification for structural health monitoring (SHM) is explored through applying the x-vector speaker recognition technique in the structural domain. Using the progressive damage tests from the Z24 Bridge Benchmark dataset, a time-delay neural network (TDNN) is trained as an acoustic model to classify the provided global damage scenarios. The outputs of a pre-final layer, called x-vectors, are used as damage-sensitive features for identification of damage presence and mechanisms. Since the developed TDNN has learned the underpinning dynamics of the damage mechanisms in the Z24 tests, we apply it as a basis for damage identification problems tangential to the Z24 progressive damage classification task. Transfer learning and domain transfer are investigated via application of the developed TDNN towards local damage identification of the Z24 Bridge, and global and local damage identification for the unseen LANL SHM Alamosa Canyon Bridge, UC-Irvine Bridge Column, and Bookshelf studies. Supervised and unsupervised classification techniques are explored to assess this method, and strong results in damage detection are obtained for these SHM problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Framework for Physics-Based Multi-Fidelity Modeling and Health Monitoring for a Composite Wing Design and Numerical Analysis of Locally-Resonant Meta-Lattice Structure for Vibration Attenuation Research on Testing Method and Device of Sensitivity Consistency of Acoustic Emission Sensors Unsupervised Online Anomaly Detection of Metal Additive Manufacturing Processes via a Statistical Time-Frequency Domain Approach Nonlinear Electro-Mechanical Impedance Spectroscopy for Comprehensive Monitoring of Carbon Fiber Reinforced Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1