{"title":"从稀薄空气中可持续生产硝酸盐:分子氮的光催化氧化","authors":"A. Pashkova, Bastien O. Burek, J. Bloh","doi":"10.33774/chemrxiv-2021-hljbh","DOIUrl":null,"url":null,"abstract":"Novel processes for the sustainable production of fertilizers are highly sought after to combat climate change. Herein, we demonstrate that by irradiating with strong UVA-light, TiO2 is able to photocatalytically oxidize molecular nitrogen in the gas phase under ambient conditions to NOx and nitrate. The reaction produces predominantly nitrogen dioxide with a high selectivity of up to 93% which could be captured afterwards to produce nitric acid or nitrates and used as sustainable (solar) fertilizer.","PeriodicalId":9643,"journal":{"name":"Catalysis Science & Technology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sustainable nitrate production out of thin air: The photocatalytic oxidation of molecular nitrogen\",\"authors\":\"A. Pashkova, Bastien O. Burek, J. Bloh\",\"doi\":\"10.33774/chemrxiv-2021-hljbh\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel processes for the sustainable production of fertilizers are highly sought after to combat climate change. Herein, we demonstrate that by irradiating with strong UVA-light, TiO2 is able to photocatalytically oxidize molecular nitrogen in the gas phase under ambient conditions to NOx and nitrate. The reaction produces predominantly nitrogen dioxide with a high selectivity of up to 93% which could be captured afterwards to produce nitric acid or nitrates and used as sustainable (solar) fertilizer.\",\"PeriodicalId\":9643,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33774/chemrxiv-2021-hljbh\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-hljbh","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustainable nitrate production out of thin air: The photocatalytic oxidation of molecular nitrogen
Novel processes for the sustainable production of fertilizers are highly sought after to combat climate change. Herein, we demonstrate that by irradiating with strong UVA-light, TiO2 is able to photocatalytically oxidize molecular nitrogen in the gas phase under ambient conditions to NOx and nitrate. The reaction produces predominantly nitrogen dioxide with a high selectivity of up to 93% which could be captured afterwards to produce nitric acid or nitrates and used as sustainable (solar) fertilizer.