通过多向可重新闭合紧固件的软机器模块化装配

Huiyan Yang, Shiyan Jin, Wei Dawid Wang
{"title":"通过多向可重新闭合紧固件的软机器模块化装配","authors":"Huiyan Yang, Shiyan Jin, Wei Dawid Wang","doi":"10.1002/aisy.202200048","DOIUrl":null,"url":null,"abstract":"Modular soft robots have strong adaptability and versatility in various application contexts. However, the introduction of connection mechanisms will always either reduce the structural compliance or need extra actuation appendages, resulting in the complexity of the structure and system of the robot. To address these issues, herein, a compliant and passive connection strategy is demonstrated, which is accomplished utilizing the reclosable fasteners (RFs), and other varieties including hook‐and‐loop fasteners, as the connection mechanisms to the soft modules for the rapid assembly of various soft machines. The module is a pneumatic soft actuator with both ends designed with a multifaceted structure to attach the RFs in different orientations, resulting in various assembling patterns, including linear connection, orthogonal connection, and oblique connection. Moreover, an alignment mechanism is also designed to improve the alignment precision between two assembled modules. The versatility of the RF enables soft modules capable of assembling not only between identical modules but also with diverse additional accessories for various application scenarios. Different functional assemblies are demonstrated including soft grippers, soft walking robots, and shape‐morphing electrical devices. This approach to the connection mechanisms provides routes to new modular soft robots and devices.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modular Assembly of Soft Machines via Multidirectional Reclosable Fasteners\",\"authors\":\"Huiyan Yang, Shiyan Jin, Wei Dawid Wang\",\"doi\":\"10.1002/aisy.202200048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modular soft robots have strong adaptability and versatility in various application contexts. However, the introduction of connection mechanisms will always either reduce the structural compliance or need extra actuation appendages, resulting in the complexity of the structure and system of the robot. To address these issues, herein, a compliant and passive connection strategy is demonstrated, which is accomplished utilizing the reclosable fasteners (RFs), and other varieties including hook‐and‐loop fasteners, as the connection mechanisms to the soft modules for the rapid assembly of various soft machines. The module is a pneumatic soft actuator with both ends designed with a multifaceted structure to attach the RFs in different orientations, resulting in various assembling patterns, including linear connection, orthogonal connection, and oblique connection. Moreover, an alignment mechanism is also designed to improve the alignment precision between two assembled modules. The versatility of the RF enables soft modules capable of assembling not only between identical modules but also with diverse additional accessories for various application scenarios. Different functional assemblies are demonstrated including soft grippers, soft walking robots, and shape‐morphing electrical devices. This approach to the connection mechanisms provides routes to new modular soft robots and devices.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202200048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202200048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

模块化软机器人在各种应用环境中具有较强的适应性和通用性。然而,连接机构的引入往往会降低结构顺应性或需要额外的作动附件,从而导致机器人结构和系统的复杂性。为了解决这些问题,本文展示了一种兼容的被动连接策略,该策略利用可重新闭合紧固件(rf)和其他品种(包括钩扣和环扣)作为软模块的连接机制,用于各种软机器的快速组装。该模块为气动软执行器,两端采用多面结构设计,以不同方向连接rf,形成多种组合方式,包括线性连接、正交连接、斜连接。此外,为了提高装配模块间的对中精度,还设计了对中机构。RF的多功能性使软模块不仅能够在相同的模块之间组装,还能够与各种应用场景的各种附加附件组装。演示了不同的功能组件,包括软抓取器,软行走机器人和形状变形电气设备。这种连接机制的方法为新的模块化软机器人和设备提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modular Assembly of Soft Machines via Multidirectional Reclosable Fasteners
Modular soft robots have strong adaptability and versatility in various application contexts. However, the introduction of connection mechanisms will always either reduce the structural compliance or need extra actuation appendages, resulting in the complexity of the structure and system of the robot. To address these issues, herein, a compliant and passive connection strategy is demonstrated, which is accomplished utilizing the reclosable fasteners (RFs), and other varieties including hook‐and‐loop fasteners, as the connection mechanisms to the soft modules for the rapid assembly of various soft machines. The module is a pneumatic soft actuator with both ends designed with a multifaceted structure to attach the RFs in different orientations, resulting in various assembling patterns, including linear connection, orthogonal connection, and oblique connection. Moreover, an alignment mechanism is also designed to improve the alignment precision between two assembled modules. The versatility of the RF enables soft modules capable of assembling not only between identical modules but also with diverse additional accessories for various application scenarios. Different functional assemblies are demonstrated including soft grippers, soft walking robots, and shape‐morphing electrical devices. This approach to the connection mechanisms provides routes to new modular soft robots and devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1