基于软紧性约束的不规则疾病簇的可扩展检测

S. Speakman, E. McFowland, S. Somanchi, Daniel B. Neill
{"title":"基于软紧性约束的不规则疾病簇的可扩展检测","authors":"S. Speakman, E. McFowland, S. Somanchi, Daniel B. Neill","doi":"10.3402/EHTJ.V4I0.11121","DOIUrl":null,"url":null,"abstract":"Introduction The spatial scan statistic (1) detects significant spatial clusters of disease by maximizing a likelihood ratio statistic F(S) over a large set of spatial regions, typically constrained by shape. The fast localized scan (2) enables scalable detection of irregular clusters by searching over proximity-constrained subsets of locations, using the linear-time subset scanning (LTSS) property to efficiently search over all subsets of each location and its k 1 nearest neighbors. However, for a fixed neighborhood size k, each of the 2 subsets are considered equally likely, and thus the fast localized scan does not take into account the spatial attributes of a subset. Hence, we wish to extend the fast localized scan by incorporating soft constraints, which give preference to spatially compact clusters while still considering all subsets within a given neighborhood.","PeriodicalId":72898,"journal":{"name":"Emerging health threats journal","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scalable detection of irregular disease clusters using soft compactness constraints\",\"authors\":\"S. Speakman, E. McFowland, S. Somanchi, Daniel B. Neill\",\"doi\":\"10.3402/EHTJ.V4I0.11121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction The spatial scan statistic (1) detects significant spatial clusters of disease by maximizing a likelihood ratio statistic F(S) over a large set of spatial regions, typically constrained by shape. The fast localized scan (2) enables scalable detection of irregular clusters by searching over proximity-constrained subsets of locations, using the linear-time subset scanning (LTSS) property to efficiently search over all subsets of each location and its k 1 nearest neighbors. However, for a fixed neighborhood size k, each of the 2 subsets are considered equally likely, and thus the fast localized scan does not take into account the spatial attributes of a subset. Hence, we wish to extend the fast localized scan by incorporating soft constraints, which give preference to spatially compact clusters while still considering all subsets within a given neighborhood.\",\"PeriodicalId\":72898,\"journal\":{\"name\":\"Emerging health threats journal\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging health threats journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3402/EHTJ.V4I0.11121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging health threats journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/EHTJ.V4I0.11121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

空间扫描统计量(1)通过在一组通常受形状限制的空间区域上最大化似然比统计量F(S)来检测显著的空间疾病簇。快速局部扫描(2)通过搜索邻近约束的位置子集,使用线性时间子集扫描(LTSS)属性有效地搜索每个位置的所有子集及其k个最近邻,从而实现不规则集群的可扩展检测。然而,对于一个固定的邻域大小k, 2个子集中的每一个都被认为是等可能的,因此快速局部扫描不考虑子集的空间属性。因此,我们希望通过结合软约束来扩展快速本地化扫描,软约束优先考虑空间紧凑的集群,同时仍然考虑给定邻域内的所有子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable detection of irregular disease clusters using soft compactness constraints
Introduction The spatial scan statistic (1) detects significant spatial clusters of disease by maximizing a likelihood ratio statistic F(S) over a large set of spatial regions, typically constrained by shape. The fast localized scan (2) enables scalable detection of irregular clusters by searching over proximity-constrained subsets of locations, using the linear-time subset scanning (LTSS) property to efficiently search over all subsets of each location and its k 1 nearest neighbors. However, for a fixed neighborhood size k, each of the 2 subsets are considered equally likely, and thus the fast localized scan does not take into account the spatial attributes of a subset. Hence, we wish to extend the fast localized scan by incorporating soft constraints, which give preference to spatially compact clusters while still considering all subsets within a given neighborhood.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Natural World Individuals and Society Hospital preparedness in community measles outbreaks-challenges and recommendations for low-resource settings. Detection of blaIMP4 and blaNDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Two vicious circles contributing to a diagnostic delay for tuberculosis patients in Arkhangelsk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1