{"title":"单面和双面模块热管理的光谱选择反射建模","authors":"I. Slauch, M. Deceglie, T. Silverman, V. Ferry","doi":"10.1109/PVSC45281.2020.9300678","DOIUrl":null,"url":null,"abstract":"Parasitic absorption in photovoltaic modules is a major source of waste heat, which drives operating temperatures 20-30K above ambient. Spectrally-selective sub-bandgap reflection can reduce parasitic absorption, thereby improving module efficiency and power output. Here, we investigate the performance of 1-D spectrally-selective mirrors in monofacial Al BSF and PERC modules, and bifacial PERC modules. In monofacial modules, these mirrors offer >1.2% increase in energy yield compared to single-layer anti-reflection coatings, while cooling by over 1K on average. Mirrors reduced bifacial module parasitic absorption by up to 34 W/m2 out of 1240 W/m2 incident.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"56 1","pages":"1388-1390"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Spectrally-Selective Reflection for Thermal Management in Monofacial and Bifacial Modules\",\"authors\":\"I. Slauch, M. Deceglie, T. Silverman, V. Ferry\",\"doi\":\"10.1109/PVSC45281.2020.9300678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parasitic absorption in photovoltaic modules is a major source of waste heat, which drives operating temperatures 20-30K above ambient. Spectrally-selective sub-bandgap reflection can reduce parasitic absorption, thereby improving module efficiency and power output. Here, we investigate the performance of 1-D spectrally-selective mirrors in monofacial Al BSF and PERC modules, and bifacial PERC modules. In monofacial modules, these mirrors offer >1.2% increase in energy yield compared to single-layer anti-reflection coatings, while cooling by over 1K on average. Mirrors reduced bifacial module parasitic absorption by up to 34 W/m2 out of 1240 W/m2 incident.\",\"PeriodicalId\":6773,\"journal\":{\"name\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"56 1\",\"pages\":\"1388-1390\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC45281.2020.9300678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Spectrally-Selective Reflection for Thermal Management in Monofacial and Bifacial Modules
Parasitic absorption in photovoltaic modules is a major source of waste heat, which drives operating temperatures 20-30K above ambient. Spectrally-selective sub-bandgap reflection can reduce parasitic absorption, thereby improving module efficiency and power output. Here, we investigate the performance of 1-D spectrally-selective mirrors in monofacial Al BSF and PERC modules, and bifacial PERC modules. In monofacial modules, these mirrors offer >1.2% increase in energy yield compared to single-layer anti-reflection coatings, while cooling by over 1K on average. Mirrors reduced bifacial module parasitic absorption by up to 34 W/m2 out of 1240 W/m2 incident.