传感器网络中的卡尔曼滤波与聚类

S. Talebi, Stefan Werner, V. Koivunen
{"title":"传感器网络中的卡尔曼滤波与聚类","authors":"S. Talebi, Stefan Werner, V. Koivunen","doi":"10.1109/ICASSP.2018.8462039","DOIUrl":null,"url":null,"abstract":"In this work, a distributed Kalman filtering and clustering framework for sensor networks tasked with tracking multiple state vector sequences is developed. This is achieved through recursively updating the likelihood of a state vector estimation from one agent offering valid information about the state vector of its neighbors, given the available observation data. These likelihoods then form the diffusion coefficients, used for information fusion over the sensor network. For rigour, the mean and mean square behavior of the developed Kalman filtering and clustering framework is analyzed, convergence criteria are established, and the performance of the developed framework is demonstrated in a simulation example.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"32 1","pages":"4309-4313"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Kalman Filtering and Clustering in Sensor Networks\",\"authors\":\"S. Talebi, Stefan Werner, V. Koivunen\",\"doi\":\"10.1109/ICASSP.2018.8462039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a distributed Kalman filtering and clustering framework for sensor networks tasked with tracking multiple state vector sequences is developed. This is achieved through recursively updating the likelihood of a state vector estimation from one agent offering valid information about the state vector of its neighbors, given the available observation data. These likelihoods then form the diffusion coefficients, used for information fusion over the sensor network. For rigour, the mean and mean square behavior of the developed Kalman filtering and clustering framework is analyzed, convergence criteria are established, and the performance of the developed framework is demonstrated in a simulation example.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"32 1\",\"pages\":\"4309-4313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,开发了一种用于跟踪多个状态向量序列的传感器网络的分布式卡尔曼滤波和聚类框架。这是通过递归地更新一个代理的状态向量估计的可能性来实现的,该代理提供有关其邻居状态向量的有效信息,给定可用的观测数据。这些可能性然后形成扩散系数,用于传感器网络上的信息融合。为提高算法的严密性,分析了所开发的卡尔曼滤波聚类框架的均值和均方行为,建立了收敛准则,并通过仿真实例验证了所开发框架的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kalman Filtering and Clustering in Sensor Networks
In this work, a distributed Kalman filtering and clustering framework for sensor networks tasked with tracking multiple state vector sequences is developed. This is achieved through recursively updating the likelihood of a state vector estimation from one agent offering valid information about the state vector of its neighbors, given the available observation data. These likelihoods then form the diffusion coefficients, used for information fusion over the sensor network. For rigour, the mean and mean square behavior of the developed Kalman filtering and clustering framework is analyzed, convergence criteria are established, and the performance of the developed framework is demonstrated in a simulation example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1