基于深度学习的油井设备状态监测

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2020-01-01 DOI:10.1142/s2424922x20500011
Y. Imamverdiyev, F. Abdullayeva
{"title":"基于深度学习的油井设备状态监测","authors":"Y. Imamverdiyev, F. Abdullayeva","doi":"10.1142/s2424922x20500011","DOIUrl":null,"url":null,"abstract":"In this paper, a fault prediction method for oil well equipment based on the analysis of time series data obtained from multiple sensors is proposed. The proposed method is based on deep learning (DL). For this purpose, comparative analysis of single-layer long short-term memory (LSTM) with the convolutional neural network (CNN) and stacked LSTM methods is provided. To demonstrate the efficacy of the proposed method, some experiments are conducted on the real data set obtained from eight sensors installed in oil wells. In this paper, compared to the single-layer LSTM model, the CNN and stacked LSTM predicted the faulty time series with a minimal loss.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"23 1","pages":"2050001:1-2050001:30"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Condition Monitoring of Equipment in Oil Wells using Deep Learning\",\"authors\":\"Y. Imamverdiyev, F. Abdullayeva\",\"doi\":\"10.1142/s2424922x20500011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fault prediction method for oil well equipment based on the analysis of time series data obtained from multiple sensors is proposed. The proposed method is based on deep learning (DL). For this purpose, comparative analysis of single-layer long short-term memory (LSTM) with the convolutional neural network (CNN) and stacked LSTM methods is provided. To demonstrate the efficacy of the proposed method, some experiments are conducted on the real data set obtained from eight sensors installed in oil wells. In this paper, compared to the single-layer LSTM model, the CNN and stacked LSTM predicted the faulty time series with a minimal loss.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"23 1\",\"pages\":\"2050001:1-2050001:30\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424922x20500011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424922x20500011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于多传感器时间序列数据分析的油井设备故障预测方法。该方法基于深度学习(DL)。为此,对单层长短期记忆(LSTM)与卷积神经网络(CNN)和堆叠LSTM方法进行了对比分析。为了验证该方法的有效性,对安装在油井中的8个传感器的真实数据集进行了实验。在本文中,与单层LSTM模型相比,CNN和堆叠LSTM以最小的损失预测故障时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Condition Monitoring of Equipment in Oil Wells using Deep Learning
In this paper, a fault prediction method for oil well equipment based on the analysis of time series data obtained from multiple sensors is proposed. The proposed method is based on deep learning (DL). For this purpose, comparative analysis of single-layer long short-term memory (LSTM) with the convolutional neural network (CNN) and stacked LSTM methods is provided. To demonstrate the efficacy of the proposed method, some experiments are conducted on the real data set obtained from eight sensors installed in oil wells. In this paper, compared to the single-layer LSTM model, the CNN and stacked LSTM predicted the faulty time series with a minimal loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1