{"title":"利用深度学习的OFDM接收机:冗余问题","authors":"Marcele O. K. Mendonça, P. Diniz","doi":"10.23919/Eusipco47968.2020.9287725","DOIUrl":null,"url":null,"abstract":"To combat the inter-symbol interference (ISI) and the inter-block interference (IBI) caused by multi-path fading in orthogonal frequency-division multiplexing (OFDM) systems, it is usually recommended employing a cyclic prefix (CP) with length equal to the channel order. In some practical cases, however, the channel order is not exactly known. Looking for a balance between a full-sized CP and its absence, we investigate the redundancy issues and propose a minimum redundancy OFDM receiver using deep-learning (DL) tools. In this way, we can benefit from an improved reception performance, when compared with CP-free case, and also a better spectrum utilization when compared with the CP-OFDM case. Moreover, compared with the CP-free case, improved performance can be obtained even when the channel order is not available. Simulation results indicate that a good BER level can be achieved and the proposed technique can also be applied in other DL-based receivers.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"95 1","pages":"1687-1691"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"OFDM Receiver Using Deep Learning: Redundancy Issues\",\"authors\":\"Marcele O. K. Mendonça, P. Diniz\",\"doi\":\"10.23919/Eusipco47968.2020.9287725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To combat the inter-symbol interference (ISI) and the inter-block interference (IBI) caused by multi-path fading in orthogonal frequency-division multiplexing (OFDM) systems, it is usually recommended employing a cyclic prefix (CP) with length equal to the channel order. In some practical cases, however, the channel order is not exactly known. Looking for a balance between a full-sized CP and its absence, we investigate the redundancy issues and propose a minimum redundancy OFDM receiver using deep-learning (DL) tools. In this way, we can benefit from an improved reception performance, when compared with CP-free case, and also a better spectrum utilization when compared with the CP-OFDM case. Moreover, compared with the CP-free case, improved performance can be obtained even when the channel order is not available. Simulation results indicate that a good BER level can be achieved and the proposed technique can also be applied in other DL-based receivers.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"95 1\",\"pages\":\"1687-1691\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OFDM Receiver Using Deep Learning: Redundancy Issues
To combat the inter-symbol interference (ISI) and the inter-block interference (IBI) caused by multi-path fading in orthogonal frequency-division multiplexing (OFDM) systems, it is usually recommended employing a cyclic prefix (CP) with length equal to the channel order. In some practical cases, however, the channel order is not exactly known. Looking for a balance between a full-sized CP and its absence, we investigate the redundancy issues and propose a minimum redundancy OFDM receiver using deep-learning (DL) tools. In this way, we can benefit from an improved reception performance, when compared with CP-free case, and also a better spectrum utilization when compared with the CP-OFDM case. Moreover, compared with the CP-free case, improved performance can be obtained even when the channel order is not available. Simulation results indicate that a good BER level can be achieved and the proposed technique can also be applied in other DL-based receivers.