Dayena J. Christian, Rajesh H. Vekariya, Kinjal D. Patel, D. Rajani, Smita D. Rajani, K. Parmar, M. T. Chhabaria, H. Patel
{"title":"查尔酮和嘧啶衍生物抗恶性疟原虫的分子对接和QSAR研究","authors":"Dayena J. Christian, Rajesh H. Vekariya, Kinjal D. Patel, D. Rajani, Smita D. Rajani, K. Parmar, M. T. Chhabaria, H. Patel","doi":"10.18052/www.scipress.com/ilcpa.85.23","DOIUrl":null,"url":null,"abstract":"A data set of chalcone and pyrimidine derivatives with anti-malarial activity against Plasmodium falciparum was employed in investigating the quantitative structure-activity relationship (QSAR). Molecular docking study was performed for plasmodium falciparum dihydrofolate reductase (PfDHFR-TS). Genetic function approximation (GFA) technique was used to identify the descriptors that have influence on anti-malarial activity. The most influencing molecular descriptors identified include thermodynamics, structural and physical descriptors. Generated model was found to be good based on correlation coefficient, LOF, rm2 and rcv2 values. Nrotb, solubility, polarizibility may have negative influence on antimalarial activity or play an important role in growth inhibition of Plasmodium falciparum. The QSAR models so constructed provide fruitful insights for the future development of anti-malarial agents.","PeriodicalId":14453,"journal":{"name":"International Letters of Chemistry, Physics and Astronomy","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Docking and QSAR Study of Chalcone and Pyrimidine Derivatives as Potent Anti-Malarial Agents against Plasmodium falciparum\",\"authors\":\"Dayena J. Christian, Rajesh H. Vekariya, Kinjal D. Patel, D. Rajani, Smita D. Rajani, K. Parmar, M. T. Chhabaria, H. Patel\",\"doi\":\"10.18052/www.scipress.com/ilcpa.85.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A data set of chalcone and pyrimidine derivatives with anti-malarial activity against Plasmodium falciparum was employed in investigating the quantitative structure-activity relationship (QSAR). Molecular docking study was performed for plasmodium falciparum dihydrofolate reductase (PfDHFR-TS). Genetic function approximation (GFA) technique was used to identify the descriptors that have influence on anti-malarial activity. The most influencing molecular descriptors identified include thermodynamics, structural and physical descriptors. Generated model was found to be good based on correlation coefficient, LOF, rm2 and rcv2 values. Nrotb, solubility, polarizibility may have negative influence on antimalarial activity or play an important role in growth inhibition of Plasmodium falciparum. The QSAR models so constructed provide fruitful insights for the future development of anti-malarial agents.\",\"PeriodicalId\":14453,\"journal\":{\"name\":\"International Letters of Chemistry, Physics and Astronomy\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Letters of Chemistry, Physics and Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/www.scipress.com/ilcpa.85.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Letters of Chemistry, Physics and Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/www.scipress.com/ilcpa.85.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Docking and QSAR Study of Chalcone and Pyrimidine Derivatives as Potent Anti-Malarial Agents against Plasmodium falciparum
A data set of chalcone and pyrimidine derivatives with anti-malarial activity against Plasmodium falciparum was employed in investigating the quantitative structure-activity relationship (QSAR). Molecular docking study was performed for plasmodium falciparum dihydrofolate reductase (PfDHFR-TS). Genetic function approximation (GFA) technique was used to identify the descriptors that have influence on anti-malarial activity. The most influencing molecular descriptors identified include thermodynamics, structural and physical descriptors. Generated model was found to be good based on correlation coefficient, LOF, rm2 and rcv2 values. Nrotb, solubility, polarizibility may have negative influence on antimalarial activity or play an important role in growth inhibition of Plasmodium falciparum. The QSAR models so constructed provide fruitful insights for the future development of anti-malarial agents.