功能几何与卢瑟里特征:功能珍珠

Harry G. Mairson
{"title":"功能几何与卢瑟里特征:功能珍珠","authors":"Harry G. Mairson","doi":"10.1145/2500365.2500617","DOIUrl":null,"url":null,"abstract":"We describe a functional programming approach to the design of outlines of eighteenth-century string instruments. The approach is based on the research described in François Denis's book, Traité de lutherie. The programming vernacular for Denis's instructions, which we call functional geometry, is meant to reiterate the historically justified language and techniques of this musical instrument design. The programming metaphor is entirely Euclidean, involving straightedge and compass constructions, with few (if any) numbers, and no Cartesian equations or grid. As such, it is also an interesting approach to teaching programming and mathematics without numerical calculation or equational reasoning. The advantage of this language-based, functional approach to lutherie is founded in the abstract characterization of common patterns in instrument design. These patterns include not only the abstraction of common straightedge and compass constructions, but of higher-order conceptualization of the instrument design process. We also discuss the role of arithmetic, geometric, harmonic, and subharmonic proportions, and the use of their rational approximants.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Functional geometry and the Traité de Lutherie: functional pearl\",\"authors\":\"Harry G. Mairson\",\"doi\":\"10.1145/2500365.2500617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a functional programming approach to the design of outlines of eighteenth-century string instruments. The approach is based on the research described in François Denis's book, Traité de lutherie. The programming vernacular for Denis's instructions, which we call functional geometry, is meant to reiterate the historically justified language and techniques of this musical instrument design. The programming metaphor is entirely Euclidean, involving straightedge and compass constructions, with few (if any) numbers, and no Cartesian equations or grid. As such, it is also an interesting approach to teaching programming and mathematics without numerical calculation or equational reasoning. The advantage of this language-based, functional approach to lutherie is founded in the abstract characterization of common patterns in instrument design. These patterns include not only the abstraction of common straightedge and compass constructions, but of higher-order conceptualization of the instrument design process. We also discuss the role of arithmetic, geometric, harmonic, and subharmonic proportions, and the use of their rational approximants.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2500365.2500617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500365.2500617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们描述了一种函数式编程方法来设计18世纪弦乐器的轮廓。这种方法是基于弗朗索瓦·丹尼斯(francois Denis)的书《鲁特理论》(trait de lutherie)中所描述的研究。丹尼斯指令的编程语言,我们称之为功能几何,旨在重申这种乐器设计的历史合理的语言和技术。编程的隐喻完全是欧几里得式的,包括直线和罗盘结构,很少(如果有的话)数字,没有笛卡尔方程或网格。因此,它也是一种有趣的方法来教授编程和数学,而不需要数值计算或方程推理。这种基于语言的功能方法的优势是建立在乐器设计中常见模式的抽象表征上。这些模式不仅包括对普通直尺和罗盘结构的抽象,还包括对仪器设计过程的高阶概念化。我们还讨论了算术比例、几何比例、调和比例和次调和比例的作用,以及它们的有理近似的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional geometry and the Traité de Lutherie: functional pearl
We describe a functional programming approach to the design of outlines of eighteenth-century string instruments. The approach is based on the research described in François Denis's book, Traité de lutherie. The programming vernacular for Denis's instructions, which we call functional geometry, is meant to reiterate the historically justified language and techniques of this musical instrument design. The programming metaphor is entirely Euclidean, involving straightedge and compass constructions, with few (if any) numbers, and no Cartesian equations or grid. As such, it is also an interesting approach to teaching programming and mathematics without numerical calculation or equational reasoning. The advantage of this language-based, functional approach to lutherie is founded in the abstract characterization of common patterns in instrument design. These patterns include not only the abstraction of common straightedge and compass constructions, but of higher-order conceptualization of the instrument design process. We also discuss the role of arithmetic, geometric, harmonic, and subharmonic proportions, and the use of their rational approximants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
1ML - core and modules united (F-ing first-class modules) Functional programming for dynamic and large data with self-adjusting computation A theory of gradual effect systems Building embedded systems with embedded DSLs Homotopical patch theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1