{"title":"一种提高氨吸收式制冷循环性能的新技术","authors":"M. Shaker, M. Abd-Elhady, M. A. Halim","doi":"10.1142/s2010132521500036","DOIUrl":null,"url":null,"abstract":"The world is now living in an energy crisis. Refrigeration and air-conditioning systems have become the basics of daily life in various fields and accordingly, it cannot be dispensed. Refrigeration machines and air-conditioning systems are the most energy-consuming systems, independent on the application whether it is domestic, commercial, industrial or medical. Therefore, using cooling systems which are powered by thermal energy, e.g., solar energy, can save a lot of electrical energy. Absorption refrigeration system is an example of a refrigeration system powered by heat energy. However, the system problem here is that it has low coefficient of performance (COP). The objective of this research is to improve the COP of the ammonia absorption cycle. This is done in the absorber unit by improving the absorption of the refrigerant ammonia into the ammonia–water solution. The absorption efficiency is improved by using (1) a stirrer pump to improve mixing, (2) sprayers to increase the contact area between ammonia and ammonia–water solution and (3) continuous cooling of the solution during the absorption process via an external heat exchanger. The COP of the ammonia absorption cycle has increased from 0.48 to 0.715, i.e., by 49%. This is due to the improvement of the absorption of the ammonia into the ammonia–water solution.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":"26 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Technique for Improving the Performance of Ammonia Absorption Refrigeration Cycle\",\"authors\":\"M. Shaker, M. Abd-Elhady, M. A. Halim\",\"doi\":\"10.1142/s2010132521500036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world is now living in an energy crisis. Refrigeration and air-conditioning systems have become the basics of daily life in various fields and accordingly, it cannot be dispensed. Refrigeration machines and air-conditioning systems are the most energy-consuming systems, independent on the application whether it is domestic, commercial, industrial or medical. Therefore, using cooling systems which are powered by thermal energy, e.g., solar energy, can save a lot of electrical energy. Absorption refrigeration system is an example of a refrigeration system powered by heat energy. However, the system problem here is that it has low coefficient of performance (COP). The objective of this research is to improve the COP of the ammonia absorption cycle. This is done in the absorber unit by improving the absorption of the refrigerant ammonia into the ammonia–water solution. The absorption efficiency is improved by using (1) a stirrer pump to improve mixing, (2) sprayers to increase the contact area between ammonia and ammonia–water solution and (3) continuous cooling of the solution during the absorption process via an external heat exchanger. The COP of the ammonia absorption cycle has increased from 0.48 to 0.715, i.e., by 49%. This is due to the improvement of the absorption of the ammonia into the ammonia–water solution.\",\"PeriodicalId\":13757,\"journal\":{\"name\":\"International Journal of Air-conditioning and Refrigeration\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Air-conditioning and Refrigeration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010132521500036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132521500036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
A Novel Technique for Improving the Performance of Ammonia Absorption Refrigeration Cycle
The world is now living in an energy crisis. Refrigeration and air-conditioning systems have become the basics of daily life in various fields and accordingly, it cannot be dispensed. Refrigeration machines and air-conditioning systems are the most energy-consuming systems, independent on the application whether it is domestic, commercial, industrial or medical. Therefore, using cooling systems which are powered by thermal energy, e.g., solar energy, can save a lot of electrical energy. Absorption refrigeration system is an example of a refrigeration system powered by heat energy. However, the system problem here is that it has low coefficient of performance (COP). The objective of this research is to improve the COP of the ammonia absorption cycle. This is done in the absorber unit by improving the absorption of the refrigerant ammonia into the ammonia–water solution. The absorption efficiency is improved by using (1) a stirrer pump to improve mixing, (2) sprayers to increase the contact area between ammonia and ammonia–water solution and (3) continuous cooling of the solution during the absorption process via an external heat exchanger. The COP of the ammonia absorption cycle has increased from 0.48 to 0.715, i.e., by 49%. This is due to the improvement of the absorption of the ammonia into the ammonia–water solution.
期刊介绍:
As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.