数据验证与对账在上游生产测量集成与监控中的应用——现场研究

V. Bent, A. Amin, Timothy Jadot
{"title":"数据验证与对账在上游生产测量集成与监控中的应用——现场研究","authors":"V. Bent, A. Amin, Timothy Jadot","doi":"10.2118/205934-ms","DOIUrl":null,"url":null,"abstract":"\n With the advent of increased measurements and instrumentation in oil and gas upstream production infrastructure; in the wellbore, in subsea and on surface processing facilities, data integration from all sources can be used more effectively in producing consistent and robust production profiles. The proposed data integration methodology aims at identifying the sources of measurement and process errors and removing them from the system. This ensures quasi error-free data when driving critical applications such as well rate determination from virtual and multiphase meters, and production allocation schemes, to name few. Confidence in the data is further enhanced by quantifying the uncertainty of each measured and unmeasured variable.\n Advanced Data Validation and Reconciliation (DVR) methodology uses data redundancy to correct measurements. As more data is ingested in a modeling system the statistical aspect attached to each measurement becomes an important source of information to further improve its precision. DVR is an equation-based calculation process. It combines data redundancy and conservation laws to correct measurements and convert them into accurate and reliable information. The methodology is used in upstream oil & gas, refineries and gas plants, petrochemical plants as well as power plants including nuclear. DVR detects faulty sensors and identifies degradation of equipment performance. As such, it provides more robust inputs to operations, simulation, and automation processes.\n The DVR methodology is presented using field data from a producing offshore field. The discussion details the design and implementation of a DVR system to integrate all available field data from the wellbore and surface facilities. The integrated data in this end-to-end evaluation includes reservoir productivity parameters, downhole and wellhead measurements, tuned vertical lift models, artificial lift devices, fluid sample analysis and thermodynamic models, and top facility process measurements. The automated DVR iterative runs solve all conservation equations simultaneously when determining the production flowrates \"true values\" and their uncertainties. The DVR field application is successfully used in real-time to ensure data consistency across a number of production tasks including the continual surveillance of the critical components of the production facility, the evaluation and validation of well tests using multiphase flow metering, the virtual flow metering of each well, the modeling of fluid phase behavior in the well and in the multistage separation facility, and performing the back allocation from sales meters to individual wells.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Application of Data Validation and Reconciliation to Upstream Production Measurement Integration and Surveillance – Field Study\",\"authors\":\"V. Bent, A. Amin, Timothy Jadot\",\"doi\":\"10.2118/205934-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the advent of increased measurements and instrumentation in oil and gas upstream production infrastructure; in the wellbore, in subsea and on surface processing facilities, data integration from all sources can be used more effectively in producing consistent and robust production profiles. The proposed data integration methodology aims at identifying the sources of measurement and process errors and removing them from the system. This ensures quasi error-free data when driving critical applications such as well rate determination from virtual and multiphase meters, and production allocation schemes, to name few. Confidence in the data is further enhanced by quantifying the uncertainty of each measured and unmeasured variable.\\n Advanced Data Validation and Reconciliation (DVR) methodology uses data redundancy to correct measurements. As more data is ingested in a modeling system the statistical aspect attached to each measurement becomes an important source of information to further improve its precision. DVR is an equation-based calculation process. It combines data redundancy and conservation laws to correct measurements and convert them into accurate and reliable information. The methodology is used in upstream oil & gas, refineries and gas plants, petrochemical plants as well as power plants including nuclear. DVR detects faulty sensors and identifies degradation of equipment performance. As such, it provides more robust inputs to operations, simulation, and automation processes.\\n The DVR methodology is presented using field data from a producing offshore field. The discussion details the design and implementation of a DVR system to integrate all available field data from the wellbore and surface facilities. The integrated data in this end-to-end evaluation includes reservoir productivity parameters, downhole and wellhead measurements, tuned vertical lift models, artificial lift devices, fluid sample analysis and thermodynamic models, and top facility process measurements. The automated DVR iterative runs solve all conservation equations simultaneously when determining the production flowrates \\\"true values\\\" and their uncertainties. The DVR field application is successfully used in real-time to ensure data consistency across a number of production tasks including the continual surveillance of the critical components of the production facility, the evaluation and validation of well tests using multiphase flow metering, the virtual flow metering of each well, the modeling of fluid phase behavior in the well and in the multistage separation facility, and performing the back allocation from sales meters to individual wells.\",\"PeriodicalId\":10928,\"journal\":{\"name\":\"Day 2 Wed, September 22, 2021\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 22, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205934-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205934-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着石油和天然气上游生产基础设施中测量和仪器的增加;在井筒、海底和地面处理设施中,所有来源的数据集成可以更有效地用于生产一致且稳健的生产剖面。提出的数据集成方法旨在识别测量和过程误差的来源,并从系统中消除它们。这确保了在驱动关键应用时的准无错误数据,例如通过虚拟和多相仪表确定井速,以及生产分配方案等。通过量化每个测量和未测量变量的不确定性,进一步增强了数据的可信度。高级数据验证和协调(DVR)方法使用数据冗余来纠正测量。随着建模系统中吸收的数据越来越多,每次测量所附带的统计方面成为进一步提高建模精度的重要信息来源。DVR是一个基于方程的计算过程。它结合了数据冗余和守恒定律来纠正测量并将其转换为准确可靠的信息。该方法用于上游石油和天然气,炼油厂和天然气厂,石化厂以及包括核电站在内的发电厂。DVR检测故障传感器并识别设备性能的退化。因此,它为操作、模拟和自动化过程提供了更健壮的输入。DVR方法采用了海上油田的现场数据。详细讨论了DVR系统的设计和实现,该系统可以整合来自井筒和地面设施的所有可用现场数据。端到端评估的综合数据包括储层产能参数、井下和井口测量数据、调整后的垂直举升模型、人工举升装置、流体样本分析和热力学模型,以及顶部设施过程测量数据。在确定生产流量的“真值”及其不确定性时,自动DVR迭代运行同时求解所有守恒方程。DVR现场应用程序成功地实时使用,确保了许多生产任务的数据一致性,包括对生产设施关键部件的持续监控,使用多相流量计量进行井测试的评估和验证,每口井的虚拟流量计量,井和多级分离设施中的流体相行为建模,以及执行从销售仪表到单井的反向分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Application of Data Validation and Reconciliation to Upstream Production Measurement Integration and Surveillance – Field Study
With the advent of increased measurements and instrumentation in oil and gas upstream production infrastructure; in the wellbore, in subsea and on surface processing facilities, data integration from all sources can be used more effectively in producing consistent and robust production profiles. The proposed data integration methodology aims at identifying the sources of measurement and process errors and removing them from the system. This ensures quasi error-free data when driving critical applications such as well rate determination from virtual and multiphase meters, and production allocation schemes, to name few. Confidence in the data is further enhanced by quantifying the uncertainty of each measured and unmeasured variable. Advanced Data Validation and Reconciliation (DVR) methodology uses data redundancy to correct measurements. As more data is ingested in a modeling system the statistical aspect attached to each measurement becomes an important source of information to further improve its precision. DVR is an equation-based calculation process. It combines data redundancy and conservation laws to correct measurements and convert them into accurate and reliable information. The methodology is used in upstream oil & gas, refineries and gas plants, petrochemical plants as well as power plants including nuclear. DVR detects faulty sensors and identifies degradation of equipment performance. As such, it provides more robust inputs to operations, simulation, and automation processes. The DVR methodology is presented using field data from a producing offshore field. The discussion details the design and implementation of a DVR system to integrate all available field data from the wellbore and surface facilities. The integrated data in this end-to-end evaluation includes reservoir productivity parameters, downhole and wellhead measurements, tuned vertical lift models, artificial lift devices, fluid sample analysis and thermodynamic models, and top facility process measurements. The automated DVR iterative runs solve all conservation equations simultaneously when determining the production flowrates "true values" and their uncertainties. The DVR field application is successfully used in real-time to ensure data consistency across a number of production tasks including the continual surveillance of the critical components of the production facility, the evaluation and validation of well tests using multiphase flow metering, the virtual flow metering of each well, the modeling of fluid phase behavior in the well and in the multistage separation facility, and performing the back allocation from sales meters to individual wells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of Wettability Alteration from Alkali/Nanoparticles/Polymer Flooding - Integrating Data of Imbibition, Contact Angle and Interfacial-Tension to Screen Injection Agents Benchmarking and Field-Testing of the Distributed Quasi-Newton Derivative-Free Optimization Method for Field Development Optimization Aplicability of an Innovative and Light Seismic Approach to Monitor SAGD Operations in Surmont: A Blind Test Four Simple Questions: Decision-Centered Risk and Project Management Gas Migration in Wellbores During Pressurized Mud Cap Drilling PMCD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1