M. Jawhar, B. Till, A. Albaterni, A. Skiheita, M. Arabi, N. Mirali
{"title":"酶错配切割病理分型验证的高效通量方案","authors":"M. Jawhar, B. Till, A. Albaterni, A. Skiheita, M. Arabi, N. Mirali","doi":"10.4172/2329-9029.1000203","DOIUrl":null,"url":null,"abstract":"Early diagnosis of fungal pathotypes is one of the most important aspects for plant breeders. It provides a rapid means for selecting the correct mutant lines to ensure durability of disease resistance and also for proper field management practices. Traditional diagnostic tools for pathogens have been based on targeted cultures, PCRbased approaches, and/or phenotypic evaluation of disease response in specific plant genotypes. These methods detect only known pathogenic agents, can introduce bias, and can fail to recognize novel variants or races due to their narrow scope. While enzymatic mismatch cleavage has been described for many plant and animal species, the validate that technique for haploid microorganisms is also needed. In this work, optimized low cost method for pathotyping Fusarium oxysporum f. sp. cubense (Foc), the causal agent of fusarium wilt of banana (Musa spp.), was established using self-extracted nuclease and agarose gel electrophoresis. Gene-specific primers were designed from the whole fungal genome for use in the enzymatic mismatch cleavage on Foc representatives of the major races of major banana producing countries. Gene-specific primer pairs were used to optimize enzymatic mismatch cleavage and polymorphism discovery in two SNF1 and FOW2 genes. The protocol is rapid, inexpensive and can robustly distinguish pathotypes in Foc strains, without high informatics load of DNA sequencing.","PeriodicalId":16778,"journal":{"name":"Journal of Plant Biochemistry & Physiology","volume":"8 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Throughput Protocol for Validation of Pathotyping by Enzymatic Mismatch Cleavage\",\"authors\":\"M. Jawhar, B. Till, A. Albaterni, A. Skiheita, M. Arabi, N. Mirali\",\"doi\":\"10.4172/2329-9029.1000203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early diagnosis of fungal pathotypes is one of the most important aspects for plant breeders. It provides a rapid means for selecting the correct mutant lines to ensure durability of disease resistance and also for proper field management practices. Traditional diagnostic tools for pathogens have been based on targeted cultures, PCRbased approaches, and/or phenotypic evaluation of disease response in specific plant genotypes. These methods detect only known pathogenic agents, can introduce bias, and can fail to recognize novel variants or races due to their narrow scope. While enzymatic mismatch cleavage has been described for many plant and animal species, the validate that technique for haploid microorganisms is also needed. In this work, optimized low cost method for pathotyping Fusarium oxysporum f. sp. cubense (Foc), the causal agent of fusarium wilt of banana (Musa spp.), was established using self-extracted nuclease and agarose gel electrophoresis. Gene-specific primers were designed from the whole fungal genome for use in the enzymatic mismatch cleavage on Foc representatives of the major races of major banana producing countries. Gene-specific primer pairs were used to optimize enzymatic mismatch cleavage and polymorphism discovery in two SNF1 and FOW2 genes. The protocol is rapid, inexpensive and can robustly distinguish pathotypes in Foc strains, without high informatics load of DNA sequencing.\",\"PeriodicalId\":16778,\"journal\":{\"name\":\"Journal of Plant Biochemistry & Physiology\",\"volume\":\"8 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Biochemistry & Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-9029.1000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Biochemistry & Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-9029.1000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
真菌病原的早期诊断是植物育种的一个重要方面。它为选择正确的突变品系以确保抗病性的持久性和适当的田间管理实践提供了一种快速的手段。传统的病原体诊断工具是基于靶向培养、基于pcr的方法和/或特定植物基因型疾病反应的表型评估。这些方法只检测已知的病原体,可能会引入偏见,并且由于范围狭窄,可能无法识别新的变异或种族。虽然许多植物和动物物种已经描述了酶错配切割,但单倍体微生物的技术验证也需要。采用自提取核酸酶和琼脂糖凝胶电泳技术,建立了香蕉枯萎病病原菌Fusarium oxysporum f. sp. cubense (Foc)的低成本分型优化方法。从真菌全基因组中设计了基因特异性引物,用于对香蕉主要生产国主要种族的Foc代表进行酶配错切割。利用基因特异性引物对优化SNF1和FOW2基因的酶错配切割和多态性发现。该方法快速、廉价,可以有效区分Foc菌株的病原类型,不需要大量的DNA测序信息。
An Efficient Throughput Protocol for Validation of Pathotyping by Enzymatic Mismatch Cleavage
Early diagnosis of fungal pathotypes is one of the most important aspects for plant breeders. It provides a rapid means for selecting the correct mutant lines to ensure durability of disease resistance and also for proper field management practices. Traditional diagnostic tools for pathogens have been based on targeted cultures, PCRbased approaches, and/or phenotypic evaluation of disease response in specific plant genotypes. These methods detect only known pathogenic agents, can introduce bias, and can fail to recognize novel variants or races due to their narrow scope. While enzymatic mismatch cleavage has been described for many plant and animal species, the validate that technique for haploid microorganisms is also needed. In this work, optimized low cost method for pathotyping Fusarium oxysporum f. sp. cubense (Foc), the causal agent of fusarium wilt of banana (Musa spp.), was established using self-extracted nuclease and agarose gel electrophoresis. Gene-specific primers were designed from the whole fungal genome for use in the enzymatic mismatch cleavage on Foc representatives of the major races of major banana producing countries. Gene-specific primer pairs were used to optimize enzymatic mismatch cleavage and polymorphism discovery in two SNF1 and FOW2 genes. The protocol is rapid, inexpensive and can robustly distinguish pathotypes in Foc strains, without high informatics load of DNA sequencing.