基于单目SLAM尺度估计的EKF、SVSF、联合SVSF-EKF和ASVSF方法的比较研究

Elhaouari Kobzili, Ahmed Allam, C. Larbes
{"title":"基于单目SLAM尺度估计的EKF、SVSF、联合SVSF-EKF和ASVSF方法的比较研究","authors":"Elhaouari Kobzili, Ahmed Allam, C. Larbes","doi":"10.5220/0011317100003271","DOIUrl":null,"url":null,"abstract":": This paper presents a comparative study of scale recovering in monocular simultaneous localization and mapping (Mono-SLAM) by adopting and adapting four estimators into a multi-rate fusion mechanism and considering the scale as an element of the state vector. These estimators are: extended Kalman filter (EKF), smooth variable structure filter (SVSF), combined SVSF-EKF, and particularly adaptive smooth variable structure filter (ASVSF). The use of the ASVSF estimator represents the novelty of this paper because it provides a robust estimation of the trajectory scale as well as the covariance matrix at each iteration. This later represents the estimation incertitude. A second sensor is involved (inertial measurement unit (IMU)) as a reference to align the up to scale trajectory provided by the Mono-SLAM box. The designed system allows finding the scale factor with a rate not further than the IMU frequency and avoids complex synchronization. In order to outline the limitation of each estimator used for scale recovering, a deep analysis of the proposed approaches in terms of robustness, stability, accuracy, and real-time constraint was carried out.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"18 1","pages":"668-679"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study between EKF, SVSF, Combined SVSF-EKF, and ASVSF Approaches based Scale Estimation of Monocular SLAM\",\"authors\":\"Elhaouari Kobzili, Ahmed Allam, C. Larbes\",\"doi\":\"10.5220/0011317100003271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper presents a comparative study of scale recovering in monocular simultaneous localization and mapping (Mono-SLAM) by adopting and adapting four estimators into a multi-rate fusion mechanism and considering the scale as an element of the state vector. These estimators are: extended Kalman filter (EKF), smooth variable structure filter (SVSF), combined SVSF-EKF, and particularly adaptive smooth variable structure filter (ASVSF). The use of the ASVSF estimator represents the novelty of this paper because it provides a robust estimation of the trajectory scale as well as the covariance matrix at each iteration. This later represents the estimation incertitude. A second sensor is involved (inertial measurement unit (IMU)) as a reference to align the up to scale trajectory provided by the Mono-SLAM box. The designed system allows finding the scale factor with a rate not further than the IMU frequency and avoids complex synchronization. In order to outline the limitation of each estimator used for scale recovering, a deep analysis of the proposed approaches in terms of robustness, stability, accuracy, and real-time constraint was carried out.\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"18 1\",\"pages\":\"668-679\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011317100003271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011317100003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将尺度作为状态向量的一个元素,采用多速率融合机制对单目同步定位与制图(Mono-SLAM)中的尺度恢复进行了比较研究。这些估计是:扩展卡尔曼滤波器(EKF)、光滑变结构滤波器(SVSF)、组合SVSF-EKF,特别是自适应光滑变结构滤波器(ASVSF)。ASVSF估计器的使用代表了本文的新颖性,因为它在每次迭代中提供了对轨迹尺度和协方差矩阵的稳健估计。这稍后表示估计的不确定性。第二个传感器(惯性测量单元(IMU))作为参考,以对准由Mono-SLAM箱提供的按比例轨迹。设计的系统允许以不超过IMU频率的速率找到比例因子,并避免复杂的同步。为了概述用于尺度恢复的每种估计器的局限性,从鲁棒性、稳定性、准确性和实时约束等方面对所提出的方法进行了深入分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Study between EKF, SVSF, Combined SVSF-EKF, and ASVSF Approaches based Scale Estimation of Monocular SLAM
: This paper presents a comparative study of scale recovering in monocular simultaneous localization and mapping (Mono-SLAM) by adopting and adapting four estimators into a multi-rate fusion mechanism and considering the scale as an element of the state vector. These estimators are: extended Kalman filter (EKF), smooth variable structure filter (SVSF), combined SVSF-EKF, and particularly adaptive smooth variable structure filter (ASVSF). The use of the ASVSF estimator represents the novelty of this paper because it provides a robust estimation of the trajectory scale as well as the covariance matrix at each iteration. This later represents the estimation incertitude. A second sensor is involved (inertial measurement unit (IMU)) as a reference to align the up to scale trajectory provided by the Mono-SLAM box. The designed system allows finding the scale factor with a rate not further than the IMU frequency and avoids complex synchronization. In order to outline the limitation of each estimator used for scale recovering, a deep analysis of the proposed approaches in terms of robustness, stability, accuracy, and real-time constraint was carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informatics in Control, Automation and Robotics: 18th International Conference, ICINCO 2021 Lieusaint - Paris, France, July 6–8, 2021, Revised Selected Papers A Digital Twin Setup for Safety-aware Optimization of a Cyber-physical System Segmenting Maps by Analyzing Free and Occupied Regions with Voronoi Diagrams Efficient Verification of CPA Lyapunov Functions Open-loop Control of a Soft Arm in Throwing Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1