{"title":"MicroRNA-24通过抑制氧化应激减轻异氟醚诱导的大鼠海马神经毒性。","authors":"Na Li, L. Yue, Jun Wang, Zhenzhen Wan, Wenhao Bu","doi":"10.1139/bcb-2019-0188","DOIUrl":null,"url":null,"abstract":"Recently, several miRNAs have been suggested to serve as potential therapeutic targets for anesthesia-related diseases. This study was carried out to explore the biological roles of miR-24 in isoflurane-treated rat hippocampal neurons. Isoflurane-treated rat model was established to induce neurotoxicity. Gain- and loss- of function of miR-24 was performed and the size and Ca2+ permeability of mitochondria, cell proliferation and apoptosis and levels of oxidative stress-related factors were measured both in vivo and in vitro. Dual luciferase reporter gene assay was used to identify the target relation between miR-24 and p27kip1. In this study, isoflurane treatment decreased miR-24 expression, after which the neuronal apoptosis and the oxidative-stress-related factors were elevated while the neuronal viability was reduced. Over-expression of miR-24 inhibited oxidative damage and neuronal apoptosis in hippocampus and suppressed the size and Ca2+ permeability of mitochondria of hippocampal neurons. miR-24 enhanced the viability of rat hippocampal neurons by targeting p27kip1. To conclude, this study demonstrated that miR-24 could attenuate isoflurane-induced neurotoxicity in rat hippocampus via anti-oxidative stress function and inhibiting p27kip1 expression.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"MicroRNA-24 alleviates isoflurane-induced neurotoxicity in rat hippocampus via attenuation of oxidative stress.\",\"authors\":\"Na Li, L. Yue, Jun Wang, Zhenzhen Wan, Wenhao Bu\",\"doi\":\"10.1139/bcb-2019-0188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, several miRNAs have been suggested to serve as potential therapeutic targets for anesthesia-related diseases. This study was carried out to explore the biological roles of miR-24 in isoflurane-treated rat hippocampal neurons. Isoflurane-treated rat model was established to induce neurotoxicity. Gain- and loss- of function of miR-24 was performed and the size and Ca2+ permeability of mitochondria, cell proliferation and apoptosis and levels of oxidative stress-related factors were measured both in vivo and in vitro. Dual luciferase reporter gene assay was used to identify the target relation between miR-24 and p27kip1. In this study, isoflurane treatment decreased miR-24 expression, after which the neuronal apoptosis and the oxidative-stress-related factors were elevated while the neuronal viability was reduced. Over-expression of miR-24 inhibited oxidative damage and neuronal apoptosis in hippocampus and suppressed the size and Ca2+ permeability of mitochondria of hippocampal neurons. miR-24 enhanced the viability of rat hippocampal neurons by targeting p27kip1. To conclude, this study demonstrated that miR-24 could attenuate isoflurane-induced neurotoxicity in rat hippocampus via anti-oxidative stress function and inhibiting p27kip1 expression.\",\"PeriodicalId\":9524,\"journal\":{\"name\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2019-0188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/bcb-2019-0188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MicroRNA-24 alleviates isoflurane-induced neurotoxicity in rat hippocampus via attenuation of oxidative stress.
Recently, several miRNAs have been suggested to serve as potential therapeutic targets for anesthesia-related diseases. This study was carried out to explore the biological roles of miR-24 in isoflurane-treated rat hippocampal neurons. Isoflurane-treated rat model was established to induce neurotoxicity. Gain- and loss- of function of miR-24 was performed and the size and Ca2+ permeability of mitochondria, cell proliferation and apoptosis and levels of oxidative stress-related factors were measured both in vivo and in vitro. Dual luciferase reporter gene assay was used to identify the target relation between miR-24 and p27kip1. In this study, isoflurane treatment decreased miR-24 expression, after which the neuronal apoptosis and the oxidative-stress-related factors were elevated while the neuronal viability was reduced. Over-expression of miR-24 inhibited oxidative damage and neuronal apoptosis in hippocampus and suppressed the size and Ca2+ permeability of mitochondria of hippocampal neurons. miR-24 enhanced the viability of rat hippocampal neurons by targeting p27kip1. To conclude, this study demonstrated that miR-24 could attenuate isoflurane-induced neurotoxicity in rat hippocampus via anti-oxidative stress function and inhibiting p27kip1 expression.