Heechan Han, T. Abitew, Seonggyu Park, C. Green, Jaehak Jeong
{"title":"基于卫星的科罗拉多河流域降水产品时空评价","authors":"Heechan Han, T. Abitew, Seonggyu Park, C. Green, Jaehak Jeong","doi":"10.1175/jhm-d-23-0003.1","DOIUrl":null,"url":null,"abstract":"\nGridded precipitation products from satellite-based systems provide continuous and seamless data that can overcome the limitations of ground-based precipitation data. Remote sensing (RS) products can provide efficient precipitation data in the desert rangelands and the Rocky Mountains of the western United States, where ground-based rain gauges are sparse. In this study, we evaluated the quality of precipitation estimates from Tropical Rainfall Measuring Mission (TRMM), Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN) in the Upper Colorado River Basin (UCRB) for the period 2000-2020. The reliability of daily precipitation data from these products was tested against ground-based observations from the National Oceanic and Atmospheric Administration (NOAA) using two continuous and four categorical statistical evaluation metrics. We investigated the effects of topographical conditions on the quality of precipitation estimates. Results show that all three products have 3 - 4 mm/day differences in daily precipitation rates compared to ground observations. In addition, the difference in monthly precipitation rates was more prominent in the wet season (November to April) than in the dry season (May to October). The margin of errors varied with the type of RS system and by location. A categorical evaluation suggests a moderate ability to detect precipitation occurrence with 50% - 60% detection ability. The reliability of precipitation estimates is mainly limited by elevation and different ecoregions and climate features.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"12 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-Temporal Evaluation of Satellite-based Precipitation Products in the Colorado River Basin\",\"authors\":\"Heechan Han, T. Abitew, Seonggyu Park, C. Green, Jaehak Jeong\",\"doi\":\"10.1175/jhm-d-23-0003.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nGridded precipitation products from satellite-based systems provide continuous and seamless data that can overcome the limitations of ground-based precipitation data. Remote sensing (RS) products can provide efficient precipitation data in the desert rangelands and the Rocky Mountains of the western United States, where ground-based rain gauges are sparse. In this study, we evaluated the quality of precipitation estimates from Tropical Rainfall Measuring Mission (TRMM), Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN) in the Upper Colorado River Basin (UCRB) for the period 2000-2020. The reliability of daily precipitation data from these products was tested against ground-based observations from the National Oceanic and Atmospheric Administration (NOAA) using two continuous and four categorical statistical evaluation metrics. We investigated the effects of topographical conditions on the quality of precipitation estimates. Results show that all three products have 3 - 4 mm/day differences in daily precipitation rates compared to ground observations. In addition, the difference in monthly precipitation rates was more prominent in the wet season (November to April) than in the dry season (May to October). The margin of errors varied with the type of RS system and by location. A categorical evaluation suggests a moderate ability to detect precipitation occurrence with 50% - 60% detection ability. The reliability of precipitation estimates is mainly limited by elevation and different ecoregions and climate features.\",\"PeriodicalId\":15962,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-23-0003.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0003.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Spatio-Temporal Evaluation of Satellite-based Precipitation Products in the Colorado River Basin
Gridded precipitation products from satellite-based systems provide continuous and seamless data that can overcome the limitations of ground-based precipitation data. Remote sensing (RS) products can provide efficient precipitation data in the desert rangelands and the Rocky Mountains of the western United States, where ground-based rain gauges are sparse. In this study, we evaluated the quality of precipitation estimates from Tropical Rainfall Measuring Mission (TRMM), Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN) in the Upper Colorado River Basin (UCRB) for the period 2000-2020. The reliability of daily precipitation data from these products was tested against ground-based observations from the National Oceanic and Atmospheric Administration (NOAA) using two continuous and four categorical statistical evaluation metrics. We investigated the effects of topographical conditions on the quality of precipitation estimates. Results show that all three products have 3 - 4 mm/day differences in daily precipitation rates compared to ground observations. In addition, the difference in monthly precipitation rates was more prominent in the wet season (November to April) than in the dry season (May to October). The margin of errors varied with the type of RS system and by location. A categorical evaluation suggests a moderate ability to detect precipitation occurrence with 50% - 60% detection ability. The reliability of precipitation estimates is mainly limited by elevation and different ecoregions and climate features.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.