基于近似乘法器的深度可分离卷积神经网络推理芯片设计

Jin-Jia Shang, Nicholas Phipps, I-Chyn Wey, T. Teo
{"title":"基于近似乘法器的深度可分离卷积神经网络推理芯片设计","authors":"Jin-Jia Shang, Nicholas Phipps, I-Chyn Wey, T. Teo","doi":"10.3390/chips2030010","DOIUrl":null,"url":null,"abstract":"For Convolutional Neural Networks (CNNs), Depthwise Separable CNN (DSCNN) is the preferred architecture for Application Specific Integrated Circuit (ASIC) implementation on edge devices. It benefits from a multi-mode approximate multiplier proposed in this work. The proposed approximate multiplier uses two 4-bit multiplication operations to implement a 12-bit multiplication operation by reusing the same multiplier array. With this approximate multiplier, sequential multiplication operations are pipelined in a modified DSCNN to fully utilize the Processing Element (PE) array in the convolutional layer. Two versions of Approximate-DSCNN (A-DSCNN) accelerators were implemented on TSMC 40 nm CMOS process with a supply voltage of 0.9 V. At a clock frequency of 200 MHz, the designs achieve 4.78 GOPs/mW and 4.89 GOP/mW power efficiency while occupying 1.16 mm2 and 0.398 mm2 area, respectively.","PeriodicalId":6666,"journal":{"name":"2015 IEEE Hot Chips 27 Symposium (HCS)","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A-DSCNN: Depthwise Separable Convolutional Neural Network Inference Chip Design Using an Approximate Multiplier\",\"authors\":\"Jin-Jia Shang, Nicholas Phipps, I-Chyn Wey, T. Teo\",\"doi\":\"10.3390/chips2030010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Convolutional Neural Networks (CNNs), Depthwise Separable CNN (DSCNN) is the preferred architecture for Application Specific Integrated Circuit (ASIC) implementation on edge devices. It benefits from a multi-mode approximate multiplier proposed in this work. The proposed approximate multiplier uses two 4-bit multiplication operations to implement a 12-bit multiplication operation by reusing the same multiplier array. With this approximate multiplier, sequential multiplication operations are pipelined in a modified DSCNN to fully utilize the Processing Element (PE) array in the convolutional layer. Two versions of Approximate-DSCNN (A-DSCNN) accelerators were implemented on TSMC 40 nm CMOS process with a supply voltage of 0.9 V. At a clock frequency of 200 MHz, the designs achieve 4.78 GOPs/mW and 4.89 GOP/mW power efficiency while occupying 1.16 mm2 and 0.398 mm2 area, respectively.\",\"PeriodicalId\":6666,\"journal\":{\"name\":\"2015 IEEE Hot Chips 27 Symposium (HCS)\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Hot Chips 27 Symposium (HCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chips2030010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Hot Chips 27 Symposium (HCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chips2030010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于卷积神经网络(CNN),深度可分离CNN (DSCNN)是在边缘设备上实现专用集成电路(ASIC)的首选架构。它得益于本工作中提出的多模近似乘法器。所建议的近似乘法器通过重用相同的乘法器数组,使用两个4位乘法操作来实现一个12位乘法操作。利用这个近似乘法器,顺序乘法运算在一个改进的DSCNN中被流水线化,以充分利用卷积层中的处理元素(PE)数组。两个版本的Approximate-DSCNN (a - dscnn)加速器在TSMC 40 nm CMOS工艺上实现,电源电压为0.9 V。在时钟频率为200mhz时,功耗效率分别为4.78 GOPs/mW和4.89 GOP/mW,功耗面积分别为1.16 mm2和0.398 mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A-DSCNN: Depthwise Separable Convolutional Neural Network Inference Chip Design Using an Approximate Multiplier
For Convolutional Neural Networks (CNNs), Depthwise Separable CNN (DSCNN) is the preferred architecture for Application Specific Integrated Circuit (ASIC) implementation on edge devices. It benefits from a multi-mode approximate multiplier proposed in this work. The proposed approximate multiplier uses two 4-bit multiplication operations to implement a 12-bit multiplication operation by reusing the same multiplier array. With this approximate multiplier, sequential multiplication operations are pipelined in a modified DSCNN to fully utilize the Processing Element (PE) array in the convolutional layer. Two versions of Approximate-DSCNN (A-DSCNN) accelerators were implemented on TSMC 40 nm CMOS process with a supply voltage of 0.9 V. At a clock frequency of 200 MHz, the designs achieve 4.78 GOPs/mW and 4.89 GOP/mW power efficiency while occupying 1.16 mm2 and 0.398 mm2 area, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Winner-Take-All and Loser-Take-All Circuits: Architectures, Applications and Analytical Comparison A Survey of Automotive Radar and Lidar Signal Processing and Architectures Design and Performance Analysis of Hardware Realization of 3GPP Physical Layer for 5G Cell Search Silicon Carbide: Physics, Manufacturing, and Its Role in Large-Scale Vehicle Electrification Synergistic Verification of Hardware Peripherals through Virtual Prototype Aided Cross-Level Methodology Leveraging Coverage-Guided Fuzzing and Co-Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1