V. Saberov, Alexandr S. Avksentiev, G. Rayenko, A. Ryabitsky, Vasil I. Yenya, Maxim Nechitaylov, N. Korotkikh
{"title":"碳杂钯配合物催化卤代芳烃加氢脱卤反应","authors":"V. Saberov, Alexandr S. Avksentiev, G. Rayenko, A. Ryabitsky, Vasil I. Yenya, Maxim Nechitaylov, N. Korotkikh","doi":"10.33609/2708-129x.88.01.2022.67-81","DOIUrl":null,"url":null,"abstract":"The synthesis of a number of carbene PEPPSI-complexes of palladium with various pyridine and carbene ligands was carried out by reactions of 1,3-bis-(2,6-dibenzhydryl-4-methylphenyl)imidazolium chloride IPr*.HCl [compounds 7a-c IPr*PdCl2L’, L’ = pyridine (а), 3-chloropyridine (b), 4-dimethylaminopyridine (с)], 1,3-bis-(2,6-diisopropylphenyl)imidazolium perchlorate IPr.HClO4 [compounds 8a,b IPr.PdCl2L’, L’ = 3-chloropyridine (а), о-phenanthroline (b)], 1,3-diphenyl-4-(2,6-diisopropylphenyl)-1,2,4-triazolium perchlorate L.HClO4 (complex 9 LPdCl2L’, L’ = 3-chloropyridine) and 1,3-dicetylimidazolium bromide L.HBr (complex 11 LPdCl2L’, L’ = pyridine) with palladium chloride in pyridines (pyridine, 3-chloropyridine), or acetonitrile in the presence of potassium carbonate. Yields of compounds – from high (56–100%) to moderate (36 %). The structure of the compounds was confirmed by 1H and 13C NMR spectroscopy. Chemical shifts of carbene atoms in the 13C NMR spectra of complexes 7a-c. 8a, b 11 are in the region 151.0-156.2 ppm, for complex 9 - at 174.4 ppm A high catalytic effect of sterically shielded complexes 7a, b, 8a, b in the hydrodehalogenation reaction of p-dichlorobenzene and hexachlorobenzene under the action of potassium tert-butoxide in isopropanol was established. 1,3-Bis-(2,6-dibenzhydryl-4-methylphenyl)-imidazol-2-ylidene complexes 7a, b (quantitative conversions with p-dichlorobenzene are achieved with 0.013 mol% of catalyst) show the highest efficiency, but the compound with 4-dimethylaminopyridine ligand 7c has significantly lower efficiency (22% conversion under these conditions). Complexes with 1,3-bis-(2,6-diisopropylphenyl)-imidazol-2-ylidene ligand 8a, b are close in efficiency to compounds 7a, b (for 7a quantitative conversion is achieved with 0.026 mol% of catalyst). Phenanthroline-containing complex 8b is less effective than complex 8a (87% conversion with 0.052 mol% of catalyst). Complex 9 is much less effective (even with 0.13 mol% of catalyst 13% conversion is achieved). Compound 11 catalyzes the reaction well only when the amount of catalyst is up to 1.3 mol% (98% conversion). Thus, compounds 7a, b, 8a are the best PEPPSI-catalysts for hydrodehalogenation of haloarenes promising for industrial decontamination of persistent organic pollutants (hexachlorobenzene, DDT, dioxins and polychlorinated biphenyls, etc.).","PeriodicalId":23394,"journal":{"name":"Ukrainian Chemistry Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CATALYSIS OF HYDRODEHALOGENATION REACTION OF HALOARENES BY CARBENE PEPPSI-PALLADIUM COMPLEXES\",\"authors\":\"V. Saberov, Alexandr S. Avksentiev, G. Rayenko, A. Ryabitsky, Vasil I. Yenya, Maxim Nechitaylov, N. Korotkikh\",\"doi\":\"10.33609/2708-129x.88.01.2022.67-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of a number of carbene PEPPSI-complexes of palladium with various pyridine and carbene ligands was carried out by reactions of 1,3-bis-(2,6-dibenzhydryl-4-methylphenyl)imidazolium chloride IPr*.HCl [compounds 7a-c IPr*PdCl2L’, L’ = pyridine (а), 3-chloropyridine (b), 4-dimethylaminopyridine (с)], 1,3-bis-(2,6-diisopropylphenyl)imidazolium perchlorate IPr.HClO4 [compounds 8a,b IPr.PdCl2L’, L’ = 3-chloropyridine (а), о-phenanthroline (b)], 1,3-diphenyl-4-(2,6-diisopropylphenyl)-1,2,4-triazolium perchlorate L.HClO4 (complex 9 LPdCl2L’, L’ = 3-chloropyridine) and 1,3-dicetylimidazolium bromide L.HBr (complex 11 LPdCl2L’, L’ = pyridine) with palladium chloride in pyridines (pyridine, 3-chloropyridine), or acetonitrile in the presence of potassium carbonate. Yields of compounds – from high (56–100%) to moderate (36 %). The structure of the compounds was confirmed by 1H and 13C NMR spectroscopy. Chemical shifts of carbene atoms in the 13C NMR spectra of complexes 7a-c. 8a, b 11 are in the region 151.0-156.2 ppm, for complex 9 - at 174.4 ppm A high catalytic effect of sterically shielded complexes 7a, b, 8a, b in the hydrodehalogenation reaction of p-dichlorobenzene and hexachlorobenzene under the action of potassium tert-butoxide in isopropanol was established. 1,3-Bis-(2,6-dibenzhydryl-4-methylphenyl)-imidazol-2-ylidene complexes 7a, b (quantitative conversions with p-dichlorobenzene are achieved with 0.013 mol% of catalyst) show the highest efficiency, but the compound with 4-dimethylaminopyridine ligand 7c has significantly lower efficiency (22% conversion under these conditions). Complexes with 1,3-bis-(2,6-diisopropylphenyl)-imidazol-2-ylidene ligand 8a, b are close in efficiency to compounds 7a, b (for 7a quantitative conversion is achieved with 0.026 mol% of catalyst). Phenanthroline-containing complex 8b is less effective than complex 8a (87% conversion with 0.052 mol% of catalyst). Complex 9 is much less effective (even with 0.13 mol% of catalyst 13% conversion is achieved). Compound 11 catalyzes the reaction well only when the amount of catalyst is up to 1.3 mol% (98% conversion). Thus, compounds 7a, b, 8a are the best PEPPSI-catalysts for hydrodehalogenation of haloarenes promising for industrial decontamination of persistent organic pollutants (hexachlorobenzene, DDT, dioxins and polychlorinated biphenyls, etc.).\",\"PeriodicalId\":23394,\"journal\":{\"name\":\"Ukrainian Chemistry Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Chemistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33609/2708-129x.88.01.2022.67-81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33609/2708-129x.88.01.2022.67-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CATALYSIS OF HYDRODEHALOGENATION REACTION OF HALOARENES BY CARBENE PEPPSI-PALLADIUM COMPLEXES
The synthesis of a number of carbene PEPPSI-complexes of palladium with various pyridine and carbene ligands was carried out by reactions of 1,3-bis-(2,6-dibenzhydryl-4-methylphenyl)imidazolium chloride IPr*.HCl [compounds 7a-c IPr*PdCl2L’, L’ = pyridine (а), 3-chloropyridine (b), 4-dimethylaminopyridine (с)], 1,3-bis-(2,6-diisopropylphenyl)imidazolium perchlorate IPr.HClO4 [compounds 8a,b IPr.PdCl2L’, L’ = 3-chloropyridine (а), о-phenanthroline (b)], 1,3-diphenyl-4-(2,6-diisopropylphenyl)-1,2,4-triazolium perchlorate L.HClO4 (complex 9 LPdCl2L’, L’ = 3-chloropyridine) and 1,3-dicetylimidazolium bromide L.HBr (complex 11 LPdCl2L’, L’ = pyridine) with palladium chloride in pyridines (pyridine, 3-chloropyridine), or acetonitrile in the presence of potassium carbonate. Yields of compounds – from high (56–100%) to moderate (36 %). The structure of the compounds was confirmed by 1H and 13C NMR spectroscopy. Chemical shifts of carbene atoms in the 13C NMR spectra of complexes 7a-c. 8a, b 11 are in the region 151.0-156.2 ppm, for complex 9 - at 174.4 ppm A high catalytic effect of sterically shielded complexes 7a, b, 8a, b in the hydrodehalogenation reaction of p-dichlorobenzene and hexachlorobenzene under the action of potassium tert-butoxide in isopropanol was established. 1,3-Bis-(2,6-dibenzhydryl-4-methylphenyl)-imidazol-2-ylidene complexes 7a, b (quantitative conversions with p-dichlorobenzene are achieved with 0.013 mol% of catalyst) show the highest efficiency, but the compound with 4-dimethylaminopyridine ligand 7c has significantly lower efficiency (22% conversion under these conditions). Complexes with 1,3-bis-(2,6-diisopropylphenyl)-imidazol-2-ylidene ligand 8a, b are close in efficiency to compounds 7a, b (for 7a quantitative conversion is achieved with 0.026 mol% of catalyst). Phenanthroline-containing complex 8b is less effective than complex 8a (87% conversion with 0.052 mol% of catalyst). Complex 9 is much less effective (even with 0.13 mol% of catalyst 13% conversion is achieved). Compound 11 catalyzes the reaction well only when the amount of catalyst is up to 1.3 mol% (98% conversion). Thus, compounds 7a, b, 8a are the best PEPPSI-catalysts for hydrodehalogenation of haloarenes promising for industrial decontamination of persistent organic pollutants (hexachlorobenzene, DDT, dioxins and polychlorinated biphenyls, etc.).