{"title":"探索在干旱气候地区,阳台对制冷能源需求的影响","authors":"Soufiane Boukarta","doi":"10.2478/sspjce-2021-0014","DOIUrl":null,"url":null,"abstract":"Abstract This paper explores the impact of balconies on the energy demand required for cooling in the arid climate zone of the city of Adrar, in Algeria. For the purpose to assess several situations of the balconies, we have chosen a parametric method based on a campaign of thermal simulations. The open and eliminated balcony type were selected and characterized by four parameters: the balcony to room ratio, the orientation, the window type, and the balcony position. A set of 100 simulations was selected randomly based on the Monte-Carlo probability technique. The final sample was corrected based on Cook’s distance which gave 85 simulations as a final sample size. A generalized regression model was performed to identify the impact of each parameter. The accuracy of the model is above 97% and the sensitivity analysis shows that the most important factor is the balcony to room ratio which could reduce the energy demand up to 26% followed by the window type (24%), the orientation (8%) and the balcony position (5%). This conclusion stresses the idea of considering the balcony as a passive solution to reduce the cooling energy demand.","PeriodicalId":30755,"journal":{"name":"Selected Scientific Papers Journal of Civil Engineering","volume":"11 1","pages":"25 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the impact of balconies on cooling energy demand in an arid climate zone\",\"authors\":\"Soufiane Boukarta\",\"doi\":\"10.2478/sspjce-2021-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper explores the impact of balconies on the energy demand required for cooling in the arid climate zone of the city of Adrar, in Algeria. For the purpose to assess several situations of the balconies, we have chosen a parametric method based on a campaign of thermal simulations. The open and eliminated balcony type were selected and characterized by four parameters: the balcony to room ratio, the orientation, the window type, and the balcony position. A set of 100 simulations was selected randomly based on the Monte-Carlo probability technique. The final sample was corrected based on Cook’s distance which gave 85 simulations as a final sample size. A generalized regression model was performed to identify the impact of each parameter. The accuracy of the model is above 97% and the sensitivity analysis shows that the most important factor is the balcony to room ratio which could reduce the energy demand up to 26% followed by the window type (24%), the orientation (8%) and the balcony position (5%). This conclusion stresses the idea of considering the balcony as a passive solution to reduce the cooling energy demand.\",\"PeriodicalId\":30755,\"journal\":{\"name\":\"Selected Scientific Papers Journal of Civil Engineering\",\"volume\":\"11 1\",\"pages\":\"25 - 35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selected Scientific Papers Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sspjce-2021-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selected Scientific Papers Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sspjce-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring the impact of balconies on cooling energy demand in an arid climate zone
Abstract This paper explores the impact of balconies on the energy demand required for cooling in the arid climate zone of the city of Adrar, in Algeria. For the purpose to assess several situations of the balconies, we have chosen a parametric method based on a campaign of thermal simulations. The open and eliminated balcony type were selected and characterized by four parameters: the balcony to room ratio, the orientation, the window type, and the balcony position. A set of 100 simulations was selected randomly based on the Monte-Carlo probability technique. The final sample was corrected based on Cook’s distance which gave 85 simulations as a final sample size. A generalized regression model was performed to identify the impact of each parameter. The accuracy of the model is above 97% and the sensitivity analysis shows that the most important factor is the balcony to room ratio which could reduce the energy demand up to 26% followed by the window type (24%), the orientation (8%) and the balcony position (5%). This conclusion stresses the idea of considering the balcony as a passive solution to reduce the cooling energy demand.