LakeEnsemblR:一个R包,用于促进湖泊的集成建模

Tadhg N. Moore, Jorrit P. Mesman, Robert Ladwig, Johannes Feldbauer, Freya Olsson, Rachel M. Pilla, T. Shatwell, J. Venkiteswaran, Austin Delany, H. Dugan, K. Rose, J. Read
{"title":"LakeEnsemblR:一个R包,用于促进湖泊的集成建模","authors":"Tadhg N. Moore, Jorrit P. Mesman, Robert Ladwig, Johannes Feldbauer, Freya Olsson, Rachel M. Pilla, T. Shatwell, J. Venkiteswaran, Austin Delany, H. Dugan, K. Rose, J. Read","doi":"10.31223/x55c8s","DOIUrl":null,"url":null,"abstract":"Model ensembles have several benefits compared to single-model applications but are not frequently used within the lake modelling community. Setting up and running multiple lake models can be challenging and time consuming, despite the many similarities between the existing models (forcing data, hypsograph, etc.). Here we present an R package, LakeEnsemblR, that facilitates running ensembles of five different one-dimensional hydrodynamic lake models (FLake, GLM, GOTM, Simstrat, MyLake). The package requires input in a standardised format and a single configuration file. LakeEnsemblR formats these files to the input files required by each model, and provides functions to run and calibrate the models. The outputs of the different models are compiled into a single file, and several post-processing operations are supported. LakeEnsemblR’s workflow standardisation can simplify model benchmarking, sharing of output files, and improve collaborations between aquatic scientists. We showcase the successful application of LakeEnsemblR for two different lakes.","PeriodicalId":12033,"journal":{"name":"Environ. Model. Softw.","volume":"47 1","pages":"105101"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"LakeEnsemblR: An R package that facilitates ensemble modelling of lakes\",\"authors\":\"Tadhg N. Moore, Jorrit P. Mesman, Robert Ladwig, Johannes Feldbauer, Freya Olsson, Rachel M. Pilla, T. Shatwell, J. Venkiteswaran, Austin Delany, H. Dugan, K. Rose, J. Read\",\"doi\":\"10.31223/x55c8s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model ensembles have several benefits compared to single-model applications but are not frequently used within the lake modelling community. Setting up and running multiple lake models can be challenging and time consuming, despite the many similarities between the existing models (forcing data, hypsograph, etc.). Here we present an R package, LakeEnsemblR, that facilitates running ensembles of five different one-dimensional hydrodynamic lake models (FLake, GLM, GOTM, Simstrat, MyLake). The package requires input in a standardised format and a single configuration file. LakeEnsemblR formats these files to the input files required by each model, and provides functions to run and calibrate the models. The outputs of the different models are compiled into a single file, and several post-processing operations are supported. LakeEnsemblR’s workflow standardisation can simplify model benchmarking, sharing of output files, and improve collaborations between aquatic scientists. We showcase the successful application of LakeEnsemblR for two different lakes.\",\"PeriodicalId\":12033,\"journal\":{\"name\":\"Environ. Model. Softw.\",\"volume\":\"47 1\",\"pages\":\"105101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environ. Model. Softw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31223/x55c8s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environ. Model. Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31223/x55c8s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

与单模型应用相比,模型集成有几个好处,但在湖泊建模界并不经常使用。尽管现有模型之间有许多相似之处(强迫数据、hypograph等),但建立和运行多个湖泊模型可能是具有挑战性和耗时的。在这里,我们提出了一个R包,lakakeensemblr,它有助于运行五种不同的一维水动力湖泊模型(FLake, GLM, GOTM, Simstrat, MyLake)的集成。该包需要以标准化格式和单个配置文件进行输入。LakeEnsemblR将这些文件格式化为每个模型所需的输入文件,并提供运行和校准模型的功能。不同模型的输出被编译成一个文件,并支持多种后处理操作。LakeEnsemblR的工作流程标准化可以简化模型基准测试,共享输出文件,并改善水生科学家之间的合作。我们展示了lakakeensemblr在两个不同湖泊的成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LakeEnsemblR: An R package that facilitates ensemble modelling of lakes
Model ensembles have several benefits compared to single-model applications but are not frequently used within the lake modelling community. Setting up and running multiple lake models can be challenging and time consuming, despite the many similarities between the existing models (forcing data, hypsograph, etc.). Here we present an R package, LakeEnsemblR, that facilitates running ensembles of five different one-dimensional hydrodynamic lake models (FLake, GLM, GOTM, Simstrat, MyLake). The package requires input in a standardised format and a single configuration file. LakeEnsemblR formats these files to the input files required by each model, and provides functions to run and calibrate the models. The outputs of the different models are compiled into a single file, and several post-processing operations are supported. LakeEnsemblR’s workflow standardisation can simplify model benchmarking, sharing of output files, and improve collaborations between aquatic scientists. We showcase the successful application of LakeEnsemblR for two different lakes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of deterministic and probabilistic precipitation nowcasting techniques over New York metropolitan area Analysis and comparison of coupled and uncoupled simulations with the COAWST model during the Gloria Storm (January 2020) in the northwestern Mediterranean Sea Bayesian analysis of high-frequency water temperature time series through Markov switching autoregressive models Inversion and forward estimation with process-based models: An investigation into cost functions, uncertainty-based weights and model-data fusion An extensible, plugin-based tool for modeling flow and reactive transport in water systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1