太阳耀斑对色球振荡的影响

D. Millar, L. Fletcher, R. Milligan
{"title":"太阳耀斑对色球振荡的影响","authors":"D. Millar, L. Fletcher, R. Milligan","doi":"10.1093/MNRAS/STAB642","DOIUrl":null,"url":null,"abstract":"Oscillations in the solar atmosphere have long been observed in quiet conditions, and increasingly also in data taken during solar flares. The chromosphere is known for its 3-minute signals, which are particularly strong over sunspot umbrae. These signals are thought to be driven by photospheric disturbances and their periods determined by the chromosphere's acoustic cut-off frequency. A small number of observations have shown the chromospheric 3-minute signals to be affected by energetic events such as solar flares, however the link between flare activity and these oscillatory signals remains unclear. In this work we present evidence of changes to the oscillatory structure of the chromosphere over a sunspot which occurs during the impulsive phase of an M1 flare. Using imaging data from the CRISP instrument across the H$\\alpha$ and Ca II 8542 {\\AA} spectral lines, we employed a method of fitting models to power spectra to produce maps of areas where there is evidence of oscillatory signals above a red noise background. Comparing results taken before and after the impulsive phase of the flare, we found that the oscillatory signals taken after the start of the flare differ in two ways: the locations of oscillatory signals had changed and the typical periods of the oscillations had tended to increase (in some cases increasing from $\\lt$100s to $\\sim$200s). Both of these results can be explained by a restructuring of the magnetic field in the chromosphere during the flare activity, which is backed up by images of coronal loops showing clear changes to magnetic connectivity. These results represent one of the many ways that active regions can be affected by solar flare events.","PeriodicalId":8493,"journal":{"name":"arXiv: Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of a solar flare on chromospheric oscillations\",\"authors\":\"D. Millar, L. Fletcher, R. Milligan\",\"doi\":\"10.1093/MNRAS/STAB642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oscillations in the solar atmosphere have long been observed in quiet conditions, and increasingly also in data taken during solar flares. The chromosphere is known for its 3-minute signals, which are particularly strong over sunspot umbrae. These signals are thought to be driven by photospheric disturbances and their periods determined by the chromosphere's acoustic cut-off frequency. A small number of observations have shown the chromospheric 3-minute signals to be affected by energetic events such as solar flares, however the link between flare activity and these oscillatory signals remains unclear. In this work we present evidence of changes to the oscillatory structure of the chromosphere over a sunspot which occurs during the impulsive phase of an M1 flare. Using imaging data from the CRISP instrument across the H$\\\\alpha$ and Ca II 8542 {\\\\AA} spectral lines, we employed a method of fitting models to power spectra to produce maps of areas where there is evidence of oscillatory signals above a red noise background. Comparing results taken before and after the impulsive phase of the flare, we found that the oscillatory signals taken after the start of the flare differ in two ways: the locations of oscillatory signals had changed and the typical periods of the oscillations had tended to increase (in some cases increasing from $\\\\lt$100s to $\\\\sim$200s). Both of these results can be explained by a restructuring of the magnetic field in the chromosphere during the flare activity, which is backed up by images of coronal loops showing clear changes to magnetic connectivity. These results represent one of the many ways that active regions can be affected by solar flare events.\",\"PeriodicalId\":8493,\"journal\":{\"name\":\"arXiv: Solar and Stellar Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Solar and Stellar Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/MNRAS/STAB642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/MNRAS/STAB642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

太阳大气的振荡长期以来一直是在安静的条件下观察到的,而且越来越多地出现在太阳耀斑期间的数据中。色球层以其3分钟信号而闻名,这种信号在太阳黑子本影上尤为强烈。这些信号被认为是由光球扰动驱动的,它们的周期由色球的声学截止频率决定。少量的观测表明,色球3分钟信号受到太阳耀斑等高能事件的影响,然而,耀斑活动与这些振荡信号之间的联系尚不清楚。在这项工作中,我们提出了在M1耀斑的脉冲阶段发生的太阳黑子上色球振荡结构变化的证据。利用CRISP仪器在H $\alpha$和Ca II 8542 {\AA}光谱线上的成像数据,我们采用了一种将模型拟合到功率谱的方法来生成在红噪声背景上有振荡信号证据的区域的地图。对比耀斑脉冲期前后的结果,我们发现耀斑开始后的振荡信号在两个方面有所不同:振荡信号的位置发生了变化,振荡的典型周期有增加的趋势(在某些情况下从$\lt$ 100秒增加到$\sim$ 200秒)。这两个结果都可以用耀斑活动期间色球层磁场的重构来解释,这一点得到日冕环图像的支持,日冕环显示了磁连通性的明显变化。这些结果代表了太阳耀斑事件影响活动区域的许多方式之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of a solar flare on chromospheric oscillations
Oscillations in the solar atmosphere have long been observed in quiet conditions, and increasingly also in data taken during solar flares. The chromosphere is known for its 3-minute signals, which are particularly strong over sunspot umbrae. These signals are thought to be driven by photospheric disturbances and their periods determined by the chromosphere's acoustic cut-off frequency. A small number of observations have shown the chromospheric 3-minute signals to be affected by energetic events such as solar flares, however the link between flare activity and these oscillatory signals remains unclear. In this work we present evidence of changes to the oscillatory structure of the chromosphere over a sunspot which occurs during the impulsive phase of an M1 flare. Using imaging data from the CRISP instrument across the H$\alpha$ and Ca II 8542 {\AA} spectral lines, we employed a method of fitting models to power spectra to produce maps of areas where there is evidence of oscillatory signals above a red noise background. Comparing results taken before and after the impulsive phase of the flare, we found that the oscillatory signals taken after the start of the flare differ in two ways: the locations of oscillatory signals had changed and the typical periods of the oscillations had tended to increase (in some cases increasing from $\lt$100s to $\sim$200s). Both of these results can be explained by a restructuring of the magnetic field in the chromosphere during the flare activity, which is backed up by images of coronal loops showing clear changes to magnetic connectivity. These results represent one of the many ways that active regions can be affected by solar flare events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Found: a rapidly spinning white dwarf in LAMOST J024048.51+195226.9 Magnetic helicity and energy budget around large confined and eruptive solar flares. On the Periods and Nature of Superhumps Deciphering Solar Magnetic Activity. II. The Solar Cycle Clock and the Onset of Solar Minimum Conditions Mapping the Youngest and Most Massive Stars in the Tarantula Nebula with MUSE-NFM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1